GEOENVI Project

Tackling the environmental concerns for deploying geothermal energy in Europe

https://www.geoenvi.eu/

The objective of the GEOENVI project is to answer environmental concerns in terms of both impacts and risks, by first setting an adapted methodology for assessing environment impacts to the project developers, and by assessing the environmental impacts and risks of geothermal projects operational or in development in Europe.

To tackle the part on assessing the environmental impacts, a team consisting of different partners: MINES ParisTech (Armines), CSGI, VITO, and OS developed first guidelines to help the generation of Life Cycle Assessment (LCA) of geothermal energy technologies and second simplified models and a protocol to develop them to facilitate the multi-criteria environmental assessment of geothermal projects.

LCA is a holistic, multi-criteria, standardised tool to estimate the environmental impacts of a system or product over its entire life cycle. It is based on four distinct steps and requires an excellent understanding of the studied system and the methodology in itself to be applied adequately. It is then very powerful as a decision-making tool to help compare, for example, different energy generating alternatives. To ease its application by non-experts, ARMINES MinesParisTech within the GEOENVI and INCER-ACV project have developed a protocol to develop simplified models. These simplified models estimate multiple environmental impacts from a limited set of parameters. In the following, the application of the five-steps protocol will be presented.

Protocol to generate simplified models

Simplified models are arithmetic equations relying on a small number of parameters that can estimate one environmental impact of a specific installation, in our case a geothermal installation.

Their generation relies on a five-steps protocol illustrated in the following Figure:

The protocol is easily implemented in Python using two librairies Brightway2 and lca-algebraic

The following Jupyter notebook will give indications on how to apply the protocol step-by-step for a hypothetical geothermal installation, which will be defined in the first step of the protocol STEP 1. Definition of the scope of the study

However, before diving into the five steps of the protocol, the required installation setup will be addressed and some words will be spent on the Jupyer Notebook in itself and the Brightway2 and lca-algebraic libraries.

Installation

In order to make the script run on your computer, you will use the Python programming language. Python is an open source programming language which includes thousands of additional libraries/packages which summarise different functions. To use Python, we will rely on the Anaconda distribution.

We will be using two libraries of Python: Brightway2 and lca-algebraic.

Brightway2 is a library to allow Life Cycle Assessment (LCA) computations in Python developed by Chris Mutel.

lca_algebraic is a library created as a layer above Brightway2 and designed for the definition of parametric inventories allowing fast computation of LCA impacts, especially suitable for Monte Carlo analyis. Its author is Raphaël Jolivet. More details on the library are provided here: https://github.com/oie-mines-paristech/lca_algebraic/ and the full documentation on the functions available in lca-algebraic is available here: https://oie-mines-paristech.github.io/lca_algebraic/doc/

The installation of all these dependencies is facilitated with the installer developed by Raphaël Jolivet and provided here: https://github.com/oie-mines-paristech/lca_algebraic#installation

Once you have installed everything, you will find a shortcut for Jupyter on your desktop and will be able to open a new Jupyter Notebook like the one we have here.

Jupyter Notebook

A Jupyter Notebook allows you to define markdown cells (like this one here) or code cells.

You can navigate through the cells using 🡅 et 🡇, you can add cells above A or below B the one you are in, you can cut X, copy C, or paste V cells. To do so, the cell needs to be selected as a whole, so a blue bar should appear on its side (not a green one).

You can execute a cell using ⏯ Exécuter above, or click on Shift+Enter. While the code cell is executing a (*) appears on the left of the cell, which is then replaced by a number once done.

Setup

Once your Jupyter Notebook is open, we start by loading the necessary libraries.

In [1]:
%load_ext autoreload
%autoreload 2
import pandas as pd
import time
import matplotlib.pyplot as plt
import numpy as np
import brightway2 as bw
import sympy as sp

# Custom utils defined for inter-acv
from lca_algebraic import *
from lca_algebraic.stats import * 
import lca_algebraic
from sympy import init_printing, simplify

init_printing()

We then need to define a new Brightway2 project and load the background database.

We chose to work with the ecoinvent 3.6 database.

To execute the lines of code below you need to download the ecoinvent 3.6 database from the ecoinvent website by logging in onto https://www.ecoinvent.org/login-databases.html and going to the "Files" section and downloading the database of your choice, e.g. ecoinvent 3.6_cut-off_ecoSpold02.7z, and unzipping it. You can specify the path to the library in the importDbfunction below

In [2]:
# Initiate the Brightway2 project by choosing any project name
# This will load the life cycle impact assessment methods and the biosphere matrix
initDb('ProtocolVideoTest')

# Import the ecoinvent database (if not already available in the chosen project)
# Update the name and path to the location of the ecoinvent database 
# here ../ represents the previous to the current directory
importDb("ecoinvent 3.6", '../ecoinvent 3.6_cut-off_ecoSpold02/datasets')

# Create a separate database to define our foreground activities
# Choose any name
USER_DB = 'GeothermalFictDB'

# It is better to clean the whole database each time, and redefine it in the notebook
# instead of relying on a state or previous run.
# Any persistent state is prone to errors.
resetDb(USER_DB)

# Also reset the parameters that are stored at project level
resetParams(USER_DB)
Biosphere database already present!!! No setup is needed
Database 'ecoinvent 3.6' has already been imported 
Db GeothermalFictDB was here. Reseting it

We can check the project we are now working in and the databases available

In [3]:
print(bw.projects.current)
print(bw.databases)
ProtocolVideoTest
Databases dictionary with 3 object(s):
	GeothermalFictDB
	biosphere3
	ecoinvent 3.6

We are now finally ready to start implementing the protocol to generate simplified models!

STEP 1 - Definition of the scope of the study

Description of the category of geothermal installation, using a Representative Geothermal System (RGS)

First, the category of geothermal installation considered is defined. For this, a Representative Geothermal System (RGS) can be used which is either a typical existing installation or a hypothetical installation with average values obtained from a set of typical existing installations.

Here, we will model a geothermal installation for heat generation with some direct $CO_2$ and $CH_4$ emissions, but no abatement system. The geothermal fluid is pumped directly from the ground, its heat transferred through a heat exchanger to the district heating system before being reinjected into the ground. We will be using the European electricity mix for the necessary electricity during operation and maintenance phase. The system considered is in line with the GEOENVI LCA guidelines for geothermal energy and displayed below.

For this exercise, we will focus the modelling only on:

  • the well drilling, and
  • the electricity consumption.

LCA-specific methodological choices

Once the category of geothermal installation is defined, the LCA-specific choices need to be made.

The functional unit is the production of one kWh of heat.

The ecoinvent 3.6. database is used for background data.

The life cycle impact assessment methods are also chosen. All available methods can be listed by using the following code.

In [4]:
list(bw.methods)
Out[4]:
[('CML 2001 (obsolete)', 'resources', 'depletion of abiotic resources'),
 ('CML 2001 (obsolete)', 'acidification potential', 'average European'),
 ('CML 2001 (obsolete)', 'acidification potential', 'generic'),
 ('CML 2001 (obsolete)', 'climate change', 'GWP 100a'),
 ('CML 2001 (obsolete)', 'climate change', 'GWP 20a'),
 ('CML 2001 (obsolete)', 'climate change', 'GWP 500a'),
 ('CML 2001 (obsolete)', 'climate change', 'lower limit of net GWP'),
 ('CML 2001 (obsolete)', 'climate change', 'upper limit of net GWP'),
 ('CML 2001 (obsolete)', 'eutrophication potential', 'average European'),
 ('CML 2001 (obsolete)', 'eutrophication potential', 'generic'),
 ('CML 2001 (obsolete)', 'freshwater aquatic ecotoxicity', 'FAETP 100a'),
 ('CML 2001 (obsolete)', 'freshwater aquatic ecotoxicity', 'FAETP 20a'),
 ('CML 2001 (obsolete)', 'freshwater aquatic ecotoxicity', 'FAETP 500a'),
 ('CML 2001 (obsolete)', 'freshwater aquatic ecotoxicity', 'FAETP infinite'),
 ('CML 2001 (obsolete)', 'freshwater sediment ecotoxicity', 'FSETP 100a'),
 ('CML 2001 (obsolete)', 'freshwater sediment ecotoxicity', 'FSETP 20a'),
 ('CML 2001 (obsolete)', 'freshwater sediment ecotoxicity', 'FSETP 500a'),
 ('CML 2001 (obsolete)', 'freshwater sediment ecotoxicity', 'FSETP infinite'),
 ('CML 2001 (obsolete)', 'human toxicity', 'HTP 100a'),
 ('CML 2001 (obsolete)', 'human toxicity', 'HTP 20a'),
 ('CML 2001 (obsolete)', 'human toxicity', 'HTP 500a'),
 ('CML 2001 (obsolete)', 'human toxicity', 'HTP infinite'),
 ('CML 2001 (obsolete)', 'ionising radiation', 'ionising radiation'),
 ('CML 2001 (obsolete)', 'land use', 'competition'),
 ('CML 2001 (obsolete)', 'malodours air', 'malodours air'),
 ('CML 2001 (obsolete)', 'marine aquatic ecotoxicity', 'MAETP 100a'),
 ('CML 2001 (obsolete)', 'marine aquatic ecotoxicity', 'MAETP 20a'),
 ('CML 2001 (obsolete)', 'marine aquatic ecotoxicity', 'MAETP 500a'),
 ('CML 2001 (obsolete)', 'marine aquatic ecotoxicity', 'MAETP infinite'),
 ('CML 2001 (obsolete)', 'marine sediment ecotoxicity', 'MSETP 100a'),
 ('CML 2001 (obsolete)', 'marine sediment ecotoxicity', 'MSETP 20a'),
 ('CML 2001 (obsolete)', 'marine sediment ecotoxicity', 'MSETP 500a'),
 ('CML 2001 (obsolete)', 'marine sediment ecotoxicity', 'MSETP infinite'),
 ('CML 2001 (obsolete)', 'photochemical oxidation (summer smog)', 'EBIR'),
 ('CML 2001 (obsolete)', 'photochemical oxidation (summer smog)', 'MIR'),
 ('CML 2001 (obsolete)', 'photochemical oxidation (summer smog)', 'MOIR'),
 ('CML 2001 (obsolete)',
  'photochemical oxidation (summer smog)',
  'high NOx POCP'),
 ('CML 2001 (obsolete)',
  'photochemical oxidation (summer smog)',
  'low NOx POCP'),
 ('CML 2001 (obsolete)', 'stratospheric ozone depletion', 'ODP 10a'),
 ('CML 2001 (obsolete)', 'stratospheric ozone depletion', 'ODP 15a'),
 ('CML 2001 (obsolete)', 'stratospheric ozone depletion', 'ODP 20a'),
 ('CML 2001 (obsolete)', 'stratospheric ozone depletion', 'ODP 25a'),
 ('CML 2001 (obsolete)', 'stratospheric ozone depletion', 'ODP 30a'),
 ('CML 2001 (obsolete)', 'stratospheric ozone depletion', 'ODP 40a'),
 ('CML 2001 (obsolete)', 'stratospheric ozone depletion', 'ODP 5a'),
 ('CML 2001 (obsolete)', 'stratospheric ozone depletion', 'ODP steady state'),
 ('CML 2001 (obsolete)', 'terrestrial ecotoxicity', 'TAETP 100a'),
 ('CML 2001 (obsolete)', 'terrestrial ecotoxicity', 'TAETP 20a'),
 ('CML 2001 (obsolete)', 'terrestrial ecotoxicity', 'TAETP 500a'),
 ('CML 2001 (obsolete)', 'terrestrial ecotoxicity', 'TAETP infinite'),
 ('CML 2001 w/o LT (obsolete)',
  'resources w/o LT',
  'depletion of abiotic resources w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'acidification potential w/o LT',
  'average European w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'acidification potential w/o LT',
  'generic w/o LT'),
 ('CML 2001 w/o LT (obsolete)', 'climate change w/o LT', 'GWP 100a w/o LT'),
 ('CML 2001 w/o LT (obsolete)', 'climate change w/o LT', 'GWP 20a w/o LT'),
 ('CML 2001 w/o LT (obsolete)', 'climate change w/o LT', 'GWP 500a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'climate change w/o LT',
  'lower limit of net GWP w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'climate change w/o LT',
  'upper limit of net GWP w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'eutrophication potential w/o LT',
  'average European w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'eutrophication potential w/o LT',
  'generic w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'freshwater aquatic ecotoxicity w/o LT',
  'FAETP 100a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'freshwater aquatic ecotoxicity w/o LT',
  'FAETP 20a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'freshwater aquatic ecotoxicity w/o LT',
  'FAETP 500a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'freshwater aquatic ecotoxicity w/o LT',
  'FAETP infinite w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'freshwater sediment ecotoxicity w/o LT',
  'FSETP 100a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'freshwater sediment ecotoxicity w/o LT',
  'FSETP 20a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'freshwater sediment ecotoxicity w/o LT',
  'FSETP 500a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'freshwater sediment ecotoxicity w/o LT',
  'FSETP infinite w/o LT'),
 ('CML 2001 w/o LT (obsolete)', 'human toxicity w/o LT', 'HTP 100a w/o LT'),
 ('CML 2001 w/o LT (obsolete)', 'human toxicity w/o LT', 'HTP 20a w/o LT'),
 ('CML 2001 w/o LT (obsolete)', 'human toxicity w/o LT', 'HTP 500a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'human toxicity w/o LT',
  'HTP infinite w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'ionising radiation w/o LT',
  'ionising radiation w/o LT'),
 ('CML 2001 w/o LT (obsolete)', 'land use w/o LT', 'competition w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'malodours air w/o LT',
  'malodours air w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'marine aquatic ecotoxicity w/o LT',
  'MAETP 100a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'marine aquatic ecotoxicity w/o LT',
  'MAETP 20a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'marine aquatic ecotoxicity w/o LT',
  'MAETP 500a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'marine aquatic ecotoxicity w/o LT',
  'MAETP infinite w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'marine sediment ecotoxicity w/o LT',
  'MSETP 100a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'marine sediment ecotoxicity w/o LT',
  'MSETP 20a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'marine sediment ecotoxicity w/o LT',
  'MSETP 500a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'marine sediment ecotoxicity w/o LT',
  'MSETP infinite w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'photochemical oxidation w/o LT',
  'EBIR w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'photochemical oxidation w/o LT',
  'MIR w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'photochemical oxidation w/o LT',
  'MOIR w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'photochemical oxidation w/o LT',
  'high NOx POCP w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'photochemical oxidation w/o LT',
  'low NOx POCP w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'stratospheric ozone depletion w/o LT',
  'ODP 10a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'stratospheric ozone depletion w/o LT',
  'ODP 15a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'stratospheric ozone depletion w/o LT',
  'ODP 20a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'stratospheric ozone depletion w/o LT',
  'ODP 25a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'stratospheric ozone depletion w/o LT',
  'ODP 30a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'stratospheric ozone depletion w/o LT',
  'ODP 40a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'stratospheric ozone depletion w/o LT',
  'ODP 5a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'stratospheric ozone depletion w/o LT',
  'ODP steady state w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'terrestrial ecotoxicity w/o LT',
  'TAETP 100a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'terrestrial ecotoxicity w/o LT',
  'TAETP 20a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'terrestrial ecotoxicity w/o LT',
  'TAETP 500a w/o LT'),
 ('CML 2001 w/o LT (obsolete)',
  'terrestrial ecotoxicity w/o LT',
  'TAETP infinite w/o LT'),
 ('eco-indicator 99, (E,E) (obsolete)', 'resources', 'mineral extraction'),
 ('eco-indicator 99, (E,E) (obsolete)', 'resources', 'total'),
 ('eco-indicator 99, (E,E) (obsolete)', 'total', 'total'),
 ('eco-indicator 99, (E,E) (obsolete)',
  'ecosystem quality',
  'acidification & eutrophication'),
 ('eco-indicator 99, (E,E) (obsolete)', 'ecosystem quality', 'ecotoxicity'),
 ('eco-indicator 99, (E,E) (obsolete)',
  'ecosystem quality',
  'land occupation'),
 ('eco-indicator 99, (E,E) (obsolete)', 'ecosystem quality', 'total'),
 ('eco-indicator 99, (E,E) (obsolete)', 'human health', 'carcinogenics'),
 ('eco-indicator 99, (E,E) (obsolete)', 'human health', 'climate change'),
 ('eco-indicator 99, (E,E) (obsolete)', 'human health', 'ionising radiation'),
 ('eco-indicator 99, (E,E) (obsolete)',
  'human health',
  'ozone layer depletion'),
 ('eco-indicator 99, (E,E) (obsolete)', 'human health', 'respiratory effects'),
 ('eco-indicator 99, (E,E) (obsolete)', 'human health', 'total'),
 ('eco-indicator 99, (E,E) (obsolete)', 'resources', 'fossil fuels'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'resources w/o LT',
  'mineral extraction w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'resources w/o LT',
  'total w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)', 'total w/o LT', 'total w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'acidification & eutrophication w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'ecotoxicity w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'land occupation w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'total w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'human health w/o LT',
  'carcinogenics w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'human health w/o LT',
  'climate change w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'human health w/o LT',
  'ionising radiation w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'human health w/o LT',
  'ozone layer depletion w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'human health w/o LT',
  'respiratory effects w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'human health w/o LT',
  'total w/o LT'),
 ('eco-indicator 99, (E,E) w/o LT (obsolete)',
  'resources w/o LT',
  'fossil fuels w/o LT'),
 ('eco-indicator 99, (H,A) (obsolete)', 'resources', 'mineral extraction'),
 ('eco-indicator 99, (H,A) (obsolete)', 'resources', 'total'),
 ('eco-indicator 99, (H,A) (obsolete)', 'total', 'total'),
 ('eco-indicator 99, (H,A) (obsolete)',
  'ecosystem quality',
  'acidification & eutrophication'),
 ('eco-indicator 99, (H,A) (obsolete)', 'ecosystem quality', 'ecotoxicity'),
 ('eco-indicator 99, (H,A) (obsolete)',
  'ecosystem quality',
  'land occupation'),
 ('eco-indicator 99, (H,A) (obsolete)', 'ecosystem quality', 'total'),
 ('eco-indicator 99, (H,A) (obsolete)', 'human health', 'carcinogenics'),
 ('eco-indicator 99, (H,A) (obsolete)', 'human health', 'climate change'),
 ('eco-indicator 99, (H,A) (obsolete)', 'human health', 'ionising radiation'),
 ('eco-indicator 99, (H,A) (obsolete)',
  'human health',
  'ozone layer depletion'),
 ('eco-indicator 99, (H,A) (obsolete)', 'human health', 'respiratory effects'),
 ('eco-indicator 99, (H,A) (obsolete)', 'human health', 'total'),
 ('eco-indicator 99, (H,A) (obsolete)', 'resources', 'fossil fuels'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'resources w/o LT',
  'mineral extraction w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'resources w/o LT',
  'total w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)', 'total w/o LT', 'total w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'acidification & eutrophication w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'ecotoxicity w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'land occupation w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'total w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'carcinogenics w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'climate change w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'ionising radiation w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'ozone layer depletion w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'respiratory effects w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'total w/o LT'),
 ('eco-indicator 99, (H,A) w/o LT (obsolete)',
  'resources w/o LT',
  'fossil fuels w/o LT'),
 ('eco-indicator 99, (I,I) (obsolete)', 'resources', 'mineral extraction'),
 ('eco-indicator 99, (I,I) (obsolete)', 'resources', 'total'),
 ('eco-indicator 99, (I,I) (obsolete)', 'total', 'total'),
 ('eco-indicator 99, (I,I) (obsolete)',
  'ecosystem quality',
  'acidification & eutrophication'),
 ('eco-indicator 99, (I,I) (obsolete)', 'ecosystem quality', 'ecotoxicity'),
 ('eco-indicator 99, (I,I) (obsolete)',
  'ecosystem quality',
  'land occupation'),
 ('eco-indicator 99, (I,I) (obsolete)', 'ecosystem quality', 'total'),
 ('eco-indicator 99, (I,I) (obsolete)', 'human health', 'carcinogenics'),
 ('eco-indicator 99, (I,I) (obsolete)', 'human health', 'climate change'),
 ('eco-indicator 99, (I,I) (obsolete)', 'human health', 'ionising radiation'),
 ('eco-indicator 99, (I,I) (obsolete)',
  'human health',
  'ozone layer depletion'),
 ('eco-indicator 99, (I,I) (obsolete)', 'human health', 'respiratory effects'),
 ('eco-indicator 99, (I,I) (obsolete)', 'human health', 'total'),
 ('ecological scarcity 1997 (obsolete)', 'total', 'deposited waste'),
 ('ecological scarcity 1997 (obsolete)', 'total', 'emission into air'),
 ('ecological scarcity 1997 (obsolete)',
  'total',
  'emission into top-soil/groundwater'),
 ('ecological scarcity 1997 (obsolete)', 'total', 'emission into water'),
 ('ecological scarcity 1997 (obsolete)', 'total', 'radioactive waste'),
 ('ecological scarcity 1997 (obsolete)', 'total', 'total'),
 ('ecological scarcity 1997 (obsolete)', 'total', 'use of energy resources'),
 ('ecological scarcity 2006 (obsolete)', 'total', 'deposited waste'),
 ('ecological scarcity 2006 (obsolete)', 'total', 'emission into air'),
 ('ecological scarcity 2006 (obsolete)', 'total', 'emission into groundwater'),
 ('ecological scarcity 2006 (obsolete)',
  'total',
  'emission into surface water'),
 ('ecological scarcity 2006 (obsolete)', 'total', 'emission into top soil'),
 ('ecological scarcity 2006 (obsolete)', 'total', 'energy resources'),
 ('ecological scarcity 2006 (obsolete)', 'total', 'natural resources'),
 ('ecological scarcity 2006 (obsolete)', 'total', 'total'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, antimony'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, cadmium'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, cerium'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, copper'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, molybdenum'),
 ('EDIP (obsolete)', 'resource consumption', 'non-renewable resources, gold'),
 ('EDIP (obsolete)', 'resource consumption', 'non-renewable resources, iron'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, lanthanum'),
 ('EDIP (obsolete)', 'resource consumption', 'non-renewable resources, lead'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, manganese'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, mercury'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, nickel'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, palladium'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, platinum'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, silver'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, tantalum'),
 ('EDIP (obsolete)', 'resource consumption', 'non-renewable resources, tin'),
 ('EDIP (obsolete)', 'resource consumption', 'non-renewable resources, zinc'),
 ('EDIP (obsolete)', 'environmental impact', 'acidification'),
 ('EDIP (obsolete)', 'environmental impact', 'ecotoxicity, acute, in water'),
 ('EDIP (obsolete)', 'environmental impact', 'ecotoxicity, chronic, in soil'),
 ('EDIP (obsolete)', 'environmental impact', 'ecotoxicity, chronic, in water'),
 ('EDIP (obsolete)',
  'environmental impact',
  'ecotoxicity, in sewage treatment plants'),
 ('EDIP (obsolete)', 'environmental impact', 'global warming, GWP 100a'),
 ('EDIP (obsolete)', 'environmental impact', 'global warming, GWP 20a'),
 ('EDIP (obsolete)', 'environmental impact', 'global warming, GWP 500a'),
 ('EDIP (obsolete)', 'environmental impact', 'human toxicity, via air'),
 ('EDIP (obsolete)', 'environmental impact', 'human toxicity, via soil'),
 ('EDIP (obsolete)',
  'environmental impact',
  'human toxicity, via surface water'),
 ('EDIP (obsolete)', 'environmental impact', 'land filling, bulk waste'),
 ('EDIP (obsolete)', 'environmental impact', 'land filling, hazardous waste'),
 ('EDIP (obsolete)',
  'environmental impact',
  'land filling, radioactive waste'),
 ('EDIP (obsolete)', 'environmental impact', 'land filling, slag and ashes'),
 ('EDIP (obsolete)',
  'environmental impact',
  'nutrient enrichment, combined potential'),
 ('EDIP (obsolete)',
  'environmental impact',
  'nutrient enrichment, separate N potential'),
 ('EDIP (obsolete)',
  'environmental impact',
  'nutrient enrichment, separate P potential'),
 ('EDIP (obsolete)',
  'environmental impact',
  'photochemical ozone formation, high NOx POCP'),
 ('EDIP (obsolete)',
  'environmental impact',
  'photochemical ozone formation, low NOx POCP'),
 ('EDIP (obsolete)',
  'environmental impact',
  'stratospheric ozone depletion, ODP 100a'),
 ('EDIP (obsolete)',
  'environmental impact',
  'stratospheric ozone depletion, ODP 20a'),
 ('EDIP (obsolete)',
  'environmental impact',
  'stratospheric ozone depletion, ODP 5a'),
 ('EDIP (obsolete)',
  'environmental impact',
  'stratospheric ozone depletion, ODP steady state'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, aluminium'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, brown coal'),
 ('EDIP (obsolete)', 'resource consumption', 'non-renewable resources, coal'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, cobalt'),
 ('EDIP (obsolete)',
  'resource consumption',
  'non-renewable resources, natural gas'),
 ('EDIP (obsolete)', 'resource consumption', 'non-renewable resources, oil'),
 ('EDIP (obsolete)', 'resource consumption', 'renewable resources, wood'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, antimony w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, cadmium w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, cerium w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, copper w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, molybdenum w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, gold w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, iron w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, lanthanum w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, lead w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, manganese w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, mercury w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, nickel w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, palladium w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, platinum w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, silver w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, tantalum w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, tin w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, zinc w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'acidification w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'ecotoxicity, acute, in water w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'ecotoxicity, chronic, in soil w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'ecotoxicity, chronic, in water w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'ecotoxicity, in sewage treatment plants w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'global warming, GWP 100a w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'global warming, GWP 20a w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'global warming, GWP 500a w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'human toxicity, via air w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'human toxicity, via soil w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'human toxicity, via surface water w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'land filling, bulk waste w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'land filling, hazardous waste w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'land filling, radioactive waste w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'land filling, slag and ashes w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'nutrient enrichment, combined potential w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'nutrient enrichment, separate N potential w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'nutrient enrichment, separate P potential w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'photochemical ozone formation, high NOx POCP w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'photochemical ozone formation, low NOx POCP w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'stratospheric ozone depletion, ODP 100a w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'stratospheric ozone depletion, ODP 20a w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'stratospheric ozone depletion, ODP 5a w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'environmental impact w/o LT',
  'stratospheric ozone depletion, ODP steady state w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, aluminium w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, brown coal w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, coal w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, cobalt w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, natural gas w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'non-renewable resources, oil w/o LT'),
 ('EDIP w/o LT (obsolete)',
  'resource consumption w/o LT',
  'renewable resources, wood w/o LT'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'antimony'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'cadmium'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'cerium'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'copper'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'molybdenum'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'gold'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'iron'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'lanthanum'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'lead'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'manganese'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'mercury'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'nickel'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'palladium'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'platinum'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'silver'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'tantalum'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'tin'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'zinc'),
 ('EDIP2003 (obsolete)', 'acidification', 'acidification'),
 ('EDIP2003 (obsolete)', 'ecotoxicity', 'acute, in water'),
 ('EDIP2003 (obsolete)', 'ecotoxicity', 'chronic, in soil'),
 ('EDIP2003 (obsolete)', 'ecotoxicity', 'chronic, in water'),
 ('EDIP2003 (obsolete)', 'ecotoxicity', 'in sewage treatment plants'),
 ('EDIP2003 (obsolete)', 'eutrophication', 'combined potential'),
 ('EDIP2003 (obsolete)', 'eutrophication', 'separate N potential'),
 ('EDIP2003 (obsolete)', 'eutrophication', 'separate P potential'),
 ('EDIP2003 (obsolete)', 'eutrophication', 'terrestrial eutrophication'),
 ('EDIP2003 (obsolete)', 'global warming', 'GWP 100a'),
 ('EDIP2003 (obsolete)', 'global warming', 'GWP 20a'),
 ('EDIP2003 (obsolete)', 'global warming', 'GWP 500a'),
 ('EDIP2003 (obsolete)', 'human toxicity', 'via air'),
 ('EDIP2003 (obsolete)', 'human toxicity', 'via soil'),
 ('EDIP2003 (obsolete)', 'human toxicity', 'via surface water'),
 ('EDIP2003 (obsolete)', 'land filling', 'bulk waste'),
 ('EDIP2003 (obsolete)', 'land filling', 'hazardous waste'),
 ('EDIP2003 (obsolete)', 'land filling', 'radioactive waste'),
 ('EDIP2003 (obsolete)', 'land filling', 'slag and ashes'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'aluminium'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'brown coal'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'coal'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'cobalt'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'natural gas'),
 ('EDIP2003 (obsolete)', 'non-renewable resources', 'oil'),
 ('EDIP2003 (obsolete)',
  'photochemical ozone formation',
  'impacts on human health'),
 ('EDIP2003 (obsolete)',
  'photochemical ozone formation',
  'impacts on vegetation'),
 ('EDIP2003 (obsolete)', 'renewable resources', 'wood'),
 ('EDIP2003 (obsolete)', 'stratospheric ozone depletion', 'ODP total'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'antimony w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'cadmium w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'cerium w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'copper w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'molybdenum w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'gold w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'iron w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'lanthanum w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'lead w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'manganese w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'mercury w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'nickel w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'palladium w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'platinum w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'silver w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'tantalum w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'tin w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'zinc w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'acidification w/o LT',
  'acidification w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'ecotoxicity w/o LT',
  'acute, in water w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'ecotoxicity w/o LT',
  'chronic, in soil w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'ecotoxicity w/o LT',
  'chronic, in water w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'ecotoxicity w/o LT',
  'in sewage treatment plants w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'eutrophication w/o LT',
  'combined potential w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'eutrophication w/o LT',
  'separate N potential w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'eutrophication w/o LT',
  'separate P potential w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'eutrophication w/o LT',
  'terrestrial eutrophication w/o LT'),
 ('EDIP2003 w/o LT (obsolete)', 'global warming w/o LT', 'GWP 100a w/o LT'),
 ('EDIP2003 w/o LT (obsolete)', 'global warming w/o LT', 'GWP 20a w/o LT'),
 ('EDIP2003 w/o LT (obsolete)', 'global warming w/o LT', 'GWP 500a w/o LT'),
 ('EDIP2003 w/o LT (obsolete)', 'human toxicity w/o LT', 'via air w/o LT'),
 ('EDIP2003 w/o LT (obsolete)', 'human toxicity w/o LT', 'via soil w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'human toxicity w/o LT',
  'via surface water w/o LT'),
 ('EDIP2003 w/o LT (obsolete)', 'land filling w/o LT', 'bulk waste w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'land filling w/o LT',
  'hazardous waste w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'land filling w/o LT',
  'radioactive waste w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'land filling w/o LT',
  'slag and ashes w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'aluminium w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'brown coal w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'coal w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'cobalt w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'natural gas w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'non-renewable resources w/o LT',
  'oil w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'photochemical ozone formation w/o LT',
  'impacts on human health w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'photochemical ozone formation w/o LT',
  'impacts on vegetation w/o LT'),
 ('EDIP2003 w/o LT (obsolete)', 'renewable resources w/o LT', 'wood w/o LT'),
 ('EDIP2003 w/o LT (obsolete)',
  'stratospheric ozone depletion w/o LT',
  'ODP total w/o LT'),
 ('EPS 2000 (obsolete)', 'total', 'abiotic stock resources'),
 ('EPS 2000 (obsolete)', 'total', 'total'),
 ('EPS 2000 (obsolete)', 'total', 'emissions into air'),
 ('EPS 2000 (obsolete)', 'total', 'emissions into soil'),
 ('EPS 2000 (obsolete)', 'total', 'emissions into water'),
 ('EPS 2000 (obsolete)', 'total', 'land occupation'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'resources',
  'mineral, fossils and renewables'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'resources',
  'mineral, fossils and renewables'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)', 'climate change', 'GWP 100a'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'ecosystem quality',
  'freshwater and terrestrial acidification'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'ecosystem quality',
  'freshwater ecotoxicity'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'ecosystem quality',
  'freshwater eutrophication'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'ecosystem quality',
  'ionising radiation'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'ecosystem quality',
  'marine eutrophication'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'ecosystem quality',
  'terrestrial eutrophication'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'human health',
  'carcinogenic effects'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)', 'human health', 'ionising radiation'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'human health',
  'non-carcinogenic effects'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'human health',
  'ozone layer depletion'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'human health',
  'photochemical ozone creation'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)',
  'human health',
  'respiratory effects, inorganics'),
 ('ILCD 1.0.8 2016 midpoint (obsolete)', 'resources', 'land use'),
 ('cumulative exergy demand',
  'metals',
  'non-renewable material resources, metals'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)', 'climate change', 'GWP 100a'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'ecosystem quality',
  'freshwater and terrestrial acidification'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'ecosystem quality',
  'freshwater ecotoxicity'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'ecosystem quality',
  'freshwater eutrophication'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'ecosystem quality',
  'ionising radiation'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'ecosystem quality',
  'marine eutrophication'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'ecosystem quality',
  'terrestrial eutrophication'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'human health',
  'carcinogenic effects'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'human health',
  'ionising radiation'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'human health',
  'non-carcinogenic effects'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'human health',
  'ozone layer depletion'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'human health',
  'photochemical ozone creation'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)',
  'human health',
  'respiratory effects, inorganics'),
 ('ILCD 1.0.8 2016 midpoint no LT (obsolete)', 'resources', 'land use'),
 ('IMPACT 2002+ (Endpoint) (obsolete)', 'resources', 'mineral extraction'),
 ('IMPACT 2002+ (Endpoint) (obsolete)', 'resources', 'total'),
 ('IMPACT 2002+ (Endpoint) (obsolete)', 'climate change', 'climate change'),
 ('IMPACT 2002+ (Endpoint) (obsolete)', 'climate change', 'total'),
 ('IMPACT 2002+ (Endpoint) (obsolete)',
  'ecosystem quality',
  'aquatic ecotoxicity'),
 ('IMPACT 2002+ (Endpoint) (obsolete)',
  'ecosystem quality',
  'land occupation'),
 ('IMPACT 2002+ (Endpoint) (obsolete)',
  'ecosystem quality',
  'terrestrial acidification & nutrification'),
 ('IMPACT 2002+ (Endpoint) (obsolete)',
  'ecosystem quality',
  'terrestrial ecotoxicity'),
 ('IMPACT 2002+ (Endpoint) (obsolete)', 'ecosystem quality', 'total'),
 ('IMPACT 2002+ (Endpoint) (obsolete)', 'human health', 'human toxicity'),
 ('IMPACT 2002+ (Endpoint) (obsolete)', 'human health', 'ionising radiation'),
 ('IMPACT 2002+ (Endpoint) (obsolete)',
  'human health',
  'ozone layer depletion'),
 ('IMPACT 2002+ (Endpoint) (obsolete)',
  'human health',
  'photochemical oxidation'),
 ('IMPACT 2002+ (Endpoint) (obsolete)',
  'human health',
  'respiratory effects (inorganics)'),
 ('IMPACT 2002+ (Endpoint) (obsolete)', 'human health', 'total'),
 ('IMPACT 2002+ (Endpoint) (obsolete)', 'resources', 'non-renewable energy'),
 ('IMPACT 2002+ (Midpoint) (obsolete)',
  'ecosystem quality',
  'aquatic acidification'),
 ('IMPACT 2002+ (Midpoint) (obsolete)',
  'ecosystem quality',
  'aquatic eutrophication'),
 ('IPCC 2001 (obsolete)', 'climate change', 'GWP 100a'),
 ('IPCC 2001 (obsolete)', 'climate change', 'GWP 20a'),
 ('IPCC 2001 (obsolete)', 'climate change', 'GWP 500a'),
 ('IPCC 2007 (obsolete)', 'climate change', 'GWP 100a'),
 ('IPCC 2007 (obsolete)', 'climate change', 'GWP 20a'),
 ('IPCC 2007 (obsolete)', 'climate change', 'GWP 500a'),
 ('IPCC 2007 no LT (obsolete)', 'climate change', 'GWP 100a'),
 ('IPCC 2007 no LT (obsolete)', 'climate change', 'GWP 20a'),
 ('IPCC 2007 no LT (obsolete)', 'climate change', 'GWP 500a'),
 ('ReCiPe Endpoint (E,A) (obsolete)', 'resources', 'metal depletion'),
 ('ReCiPe Endpoint (E,A) (obsolete)', 'resources', 'total'),
 ('ReCiPe Endpoint (E,A) (obsolete)', 'total', 'total'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'ecosystem quality',
  'agricultural land occupation'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'ecosystem quality',
  'climate change, ecosystems'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'ecosystem quality',
  'freshwater ecotoxicity'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'ecosystem quality',
  'freshwater eutrophication'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'ecosystem quality',
  'marine ecotoxicity'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'ecosystem quality',
  'natural land transformation'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'ecosystem quality',
  'terrestrial acidification'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'ecosystem quality',
  'terrestrial ecotoxicity'),
 ('ReCiPe Endpoint (E,A) (obsolete)', 'ecosystem quality', 'total'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'ecosystem quality',
  'urban land occupation'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'human health',
  'climate change, human health'),
 ('ReCiPe Endpoint (E,A) (obsolete)', 'human health', 'human toxicity'),
 ('ReCiPe Endpoint (E,A) (obsolete)', 'human health', 'ionising radiation'),
 ('ReCiPe Endpoint (E,A) (obsolete)', 'human health', 'ozone depletion'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'human health',
  'particulate matter formation'),
 ('ReCiPe Endpoint (E,A) (obsolete)',
  'human health',
  'photochemical oxidant formation'),
 ('ReCiPe Endpoint (E,A) (obsolete)', 'human health', 'total'),
 ('ReCiPe Endpoint (E,A) (obsolete)', 'resources', 'fossil depletion'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'resources w/o LT',
  'metal depletion w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'resources w/o LT',
  'total w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)', 'total w/o LT', 'total w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'agricultural land occupation w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'climate change, ecosystems w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'freshwater ecotoxicity w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'freshwater eutrophication w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'marine ecotoxicity w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'natural land transformation w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'terrestrial acidification w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'terrestrial ecotoxicity w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'total w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'urban land occupation w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'human health w/o LT',
  'climate change, human health w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'human health w/o LT',
  'human toxicity w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'human health w/o LT',
  'ionising radiation w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'human health w/o LT',
  'ozone depletion w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'human health w/o LT',
  'particulate matter formation w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'human health w/o LT',
  'photochemical oxidant formation w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'human health w/o LT',
  'total w/o LT'),
 ('ReCiPe Endpoint (E,A) w/o LT (obsolete)',
  'resources w/o LT',
  'fossil depletion w/o LT'),
 ('ReCiPe Endpoint (H,A) (obsolete)', 'resources', 'metal depletion'),
 ('ReCiPe Endpoint (H,A) (obsolete)', 'resources', 'total'),
 ('ReCiPe Endpoint (H,A) (obsolete)', 'total', 'total'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'ecosystem quality',
  'agricultural land occupation'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'ecosystem quality',
  'climate change, ecosystems'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'ecosystem quality',
  'freshwater ecotoxicity'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'ecosystem quality',
  'freshwater eutrophication'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'ecosystem quality',
  'marine ecotoxicity'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'ecosystem quality',
  'natural land transformation'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'ecosystem quality',
  'terrestrial acidification'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'ecosystem quality',
  'terrestrial ecotoxicity'),
 ('ReCiPe Endpoint (H,A) (obsolete)', 'ecosystem quality', 'total'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'ecosystem quality',
  'urban land occupation'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'human health',
  'climate change, human health'),
 ('ReCiPe Endpoint (H,A) (obsolete)', 'human health', 'human toxicity'),
 ('ReCiPe Endpoint (H,A) (obsolete)', 'human health', 'ionising radiation'),
 ('ReCiPe Endpoint (H,A) (obsolete)', 'human health', 'ozone depletion'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'human health',
  'particulate matter formation'),
 ('ReCiPe Endpoint (H,A) (obsolete)',
  'human health',
  'photochemical oxidant formation'),
 ('ReCiPe Endpoint (H,A) (obsolete)', 'human health', 'total'),
 ('ReCiPe Endpoint (H,A) (obsolete)', 'resources', 'fossil depletion'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'resources w/o LT',
  'metal depletion w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'resources w/o LT',
  'total w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)', 'total w/o LT', 'total w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'agricultural land occupation w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'climate change, ecosystems w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'freshwater ecotoxicity w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'freshwater eutrophication w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'marine ecotoxicity w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'natural land transformation w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'terrestrial acidification w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'terrestrial ecotoxicity w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'total w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'ecosystem quality w/o LT',
  'urban land occupation w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'climate change, human health w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'human toxicity w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'ionising radiation w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'ozone depletion w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'particulate matter formation w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'photochemical oxidant formation w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'human health w/o LT',
  'total w/o LT'),
 ('ReCiPe Endpoint (H,A) w/o LT (obsolete)',
  'resources w/o LT',
  'fossil depletion w/o LT'),
 ('ReCiPe Endpoint (I,A) (obsolete)', 'resources', 'metal depletion'),
 ('ReCiPe Endpoint (I,A) (obsolete)', 'resources', 'total'),
 ('ReCiPe Endpoint (I,A) (obsolete)', 'total', 'total'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'ecosystem quality',
  'agricultural land occupation'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'ecosystem quality',
  'climate change, ecosystems'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'ecosystem quality',
  'freshwater ecotoxicity'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'ecosystem quality',
  'freshwater eutrophication'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'ecosystem quality',
  'marine ecotoxicity'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'ecosystem quality',
  'natural land transformation'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'ecosystem quality',
  'terrestrial acidification'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'ecosystem quality',
  'terrestrial ecotoxicity'),
 ('ReCiPe Endpoint (I,A) (obsolete)', 'ecosystem quality', 'total'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'ecosystem quality',
  'urban land occupation'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'human health',
  'climate change, human health'),
 ('ReCiPe Endpoint (I,A) (obsolete)', 'human health', 'human toxicity'),
 ('ReCiPe Endpoint (I,A) (obsolete)', 'human health', 'ionising radiation'),
 ('ReCiPe Endpoint (I,A) (obsolete)', 'human health', 'ozone depletion'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'human health',
  'particulate matter formation'),
 ('ReCiPe Endpoint (I,A) (obsolete)',
  'human health',
  'photochemical oxidant formation'),
 ('ReCiPe Endpoint (I,A) (obsolete)', 'human health', 'total'),
 ('ReCiPe Endpoint (I,A) (obsolete)', 'resources', 'fossil depletion'),
 ('ReCiPe Midpoint (E) (obsolete)', 'metal depletion', 'MDP'),
 ('ReCiPe Midpoint (E) (obsolete)', 'agricultural land occupation', 'ALOP'),
 ('ReCiPe Midpoint (E) (obsolete)', 'climate change', 'GWP500'),
 ('ReCiPe Midpoint (E) (obsolete)', 'fossil depletion', 'FDP'),
 ('ReCiPe Midpoint (E) (obsolete)', 'freshwater ecotoxicity', 'FETPinf'),
 ('ReCiPe Midpoint (E) (obsolete)', 'freshwater eutrophication', 'FEP'),
 ('ReCiPe Midpoint (E) (obsolete)', 'human toxicity', 'HTPinf'),
 ('ReCiPe Midpoint (E) (obsolete)', 'ionising radiation', 'IRP_HE'),
 ('ReCiPe Midpoint (E) (obsolete)', 'marine ecotoxicity', 'METPinf'),
 ('ReCiPe Midpoint (E) (obsolete)', 'marine eutrophication', 'MEP'),
 ('ReCiPe Midpoint (E) (obsolete)', 'natural land transformation', 'NLTP'),
 ('ReCiPe Midpoint (E) (obsolete)', 'ozone depletion', 'ODPinf'),
 ('ReCiPe Midpoint (E) (obsolete)', 'particulate matter formation', 'PMFP'),
 ('ReCiPe Midpoint (E) (obsolete)', 'photochemical oxidant formation', 'POFP'),
 ('ReCiPe Midpoint (E) (obsolete)', 'terrestrial acidification', 'TAP500'),
 ('ReCiPe Midpoint (E) (obsolete)', 'terrestrial ecotoxicity', 'TETPinf'),
 ('ReCiPe Midpoint (E) (obsolete)', 'urban land occupation', 'ULOP'),
 ('ReCiPe Midpoint (E) (obsolete)', 'water depletion', 'WDP'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'metal depletion w/o LT',
  'MDP w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'agricultural land occupation w/o LT',
  'ALOP w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'climate change w/o LT',
  'GWP500 w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'fossil depletion w/o LT',
  'FDP w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'freshwater ecotoxicity w/o LT',
  'FETPinf w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'freshwater eutrophication w/o LT',
  'FEP w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'human toxicity w/o LT',
  'HTPinf w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'ionising radiation w/o LT',
  'IRP_HE w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'marine ecotoxicity w/o LT',
  'METPinf w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'marine eutrophication w/o LT',
  'MEP w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'natural land transformation w/o LT',
  'NLTP w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'ozone depletion w/o LT',
  'ODPinf w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'particulate matter formation w/o LT',
  'PMFP w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'photochemical oxidant formation w/o LT',
  'POFP w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'terrestrial acidification w/o LT',
  'TAP500 w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'terrestrial ecotoxicity w/o LT',
  'TETPinf w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'urban land occupation w/o LT',
  'ULOP w/o LT'),
 ('ReCiPe Midpoint (E) w/o LT (obsolete)',
  'water depletion w/o LT',
  'WDP w/o LT'),
 ('ReCiPe Midpoint (H) (obsolete)', 'metal depletion', 'MDP'),
 ('ReCiPe Midpoint (H) (obsolete)', 'agricultural land occupation', 'ALOP'),
 ('ReCiPe Midpoint (H) (obsolete)', 'climate change', 'GWP100'),
 ('ReCiPe Midpoint (H) (obsolete)', 'fossil depletion', 'FDP'),
 ('ReCiPe Midpoint (H) (obsolete)', 'freshwater ecotoxicity', 'FETPinf'),
 ('ReCiPe Midpoint (H) (obsolete)', 'freshwater eutrophication', 'FEP'),
 ('ReCiPe Midpoint (H) (obsolete)', 'human toxicity', 'HTPinf'),
 ('ReCiPe Midpoint (H) (obsolete)', 'ionising radiation', 'IRP_HE'),
 ('ReCiPe Midpoint (H) (obsolete)', 'marine ecotoxicity', 'METPinf'),
 ('ReCiPe Midpoint (H) (obsolete)', 'marine eutrophication', 'MEP'),
 ('ReCiPe Midpoint (H) (obsolete)', 'natural land transformation', 'NLTP'),
 ('ReCiPe Midpoint (H) (obsolete)', 'ozone depletion', 'ODPinf'),
 ('ReCiPe Midpoint (H) (obsolete)', 'particulate matter formation', 'PMFP'),
 ('ReCiPe Midpoint (H) (obsolete)', 'photochemical oxidant formation', 'POFP'),
 ('ReCiPe Midpoint (H) (obsolete)', 'terrestrial acidification', 'TAP100'),
 ('ReCiPe Midpoint (H) (obsolete)', 'terrestrial ecotoxicity', 'TETPinf'),
 ('ReCiPe Midpoint (H) (obsolete)', 'urban land occupation', 'ULOP'),
 ('ReCiPe Midpoint (H) (obsolete)', 'water depletion', 'WDP'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'metal depletion w/o LT',
  'MDP w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'agricultural land occupation w/o LT',
  'ALOP w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'climate change w/o LT',
  'GWP100 w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'fossil depletion w/o LT',
  'FDP w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'freshwater ecotoxicity w/o LT',
  'FETPinf w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'freshwater eutrophication w/o LT',
  'FEP w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'human toxicity w/o LT',
  'HTPinf w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'ionising radiation w/o LT',
  'IRP_HE w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'marine ecotoxicity w/o LT',
  'METPinf w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'marine eutrophication w/o LT',
  'MEP w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'natural land transformation w/o LT',
  'NLTP w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'ozone depletion w/o LT',
  'ODPinf w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'particulate matter formation w/o LT',
  'PMFP w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'photochemical oxidant formation w/o LT',
  'POFP w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'terrestrial acidification w/o LT',
  'TAP100 w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'terrestrial ecotoxicity w/o LT',
  'TETPinf w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'urban land occupation w/o LT',
  'ULOP w/o LT'),
 ('ReCiPe Midpoint (H) w/o LT (obsolete)',
  'water depletion w/o LT',
  'WDP w/o LT'),
 ('ReCiPe Midpoint (I) (obsolete)', 'metal depletion', 'MDP'),
 ('ReCiPe Midpoint (I) (obsolete)', 'agricultural land occupation', 'ALOP'),
 ('ReCiPe Midpoint (I) (obsolete)', 'climate change', 'GWP20'),
 ('ReCiPe Midpoint (I) (obsolete)', 'fossil depletion', 'FDP'),
 ('ReCiPe Midpoint (I) (obsolete)', 'freshwater ecotoxicity', 'FETP100'),
 ('ReCiPe Midpoint (I) (obsolete)', 'freshwater eutrophication', 'FEP'),
 ('ReCiPe Midpoint (I) (obsolete)', 'human toxicity', 'HTP100'),
 ('ReCiPe Midpoint (I) (obsolete)', 'ionising radiation', 'IRP_I'),
 ('ReCiPe Midpoint (I) (obsolete)', 'marine ecotoxicity', 'METP100'),
 ('ReCiPe Midpoint (I) (obsolete)', 'marine eutrophication', 'MEP'),
 ('ReCiPe Midpoint (I) (obsolete)', 'natural land transformation', 'NLTP'),
 ('ReCiPe Midpoint (I) (obsolete)', 'ozone depletion', 'ODPinf'),
 ('ReCiPe Midpoint (I) (obsolete)', 'particulate matter formation', 'PMFP'),
 ('ReCiPe Midpoint (I) (obsolete)', 'photochemical oxidant formation', 'POFP'),
 ('ReCiPe Midpoint (I) (obsolete)', 'terrestrial acidification', 'TAP20'),
 ('ReCiPe Midpoint (I) (obsolete)', 'terrestrial ecotoxicity', 'TETP100'),
 ('ReCiPe Midpoint (I) (obsolete)', 'urban land occupation', 'ULOP'),
 ('ReCiPe Midpoint (I) (obsolete)', 'water depletion', 'WDP'),
 ('TRACI (obsolete)', 'environmental impact', 'acidification'),
 ('TRACI (obsolete)', 'environmental impact', 'ecotoxicity'),
 ('TRACI (obsolete)', 'environmental impact', 'eutrophication'),
 ('TRACI (obsolete)', 'environmental impact', 'global warming'),
 ('TRACI (obsolete)', 'environmental impact', 'ozone depletion'),
 ('TRACI (obsolete)', 'environmental impact', 'photochemical oxidation'),
 ('TRACI (obsolete)', 'human health', 'carcinogenics'),
 ('TRACI (obsolete)', 'human health', 'non-carcinogenics'),
 ('TRACI (obsolete)', 'human health', 'respiratory effects, average'),
 ('USEtox (obsolete)', 'ecotoxicity', 'total'),
 ('USEtox (obsolete)', 'human toxicity', 'carcinogenic'),
 ('USEtox (obsolete)', 'human toxicity', 'non-carcinogenic'),
 ('USEtox (obsolete)', 'human toxicity', 'total'),
 ('USEtox w/o LT (obsolete)', 'ecotoxicity w/o LT', 'total w/o LT'),
 ('USEtox w/o LT (obsolete)', 'human toxicity w/o LT', 'carcinogenic w/o LT'),
 ('USEtox w/o LT (obsolete)',
  'human toxicity w/o LT',
  'non-carcinogenic w/o LT'),
 ('USEtox w/o LT (obsolete)', 'human toxicity w/o LT', 'total w/o LT'),
 ('ReCiPe Midpoint (E) V1.13', 'freshwater ecotoxicity', 'FETPinf'),
 ('ReCiPe Midpoint (E) V1.13', 'human toxicity', 'HTPinf'),
 ('ReCiPe Midpoint (E) V1.13', 'marine ecotoxicity', 'METPinf'),
 ('ReCiPe Midpoint (E) V1.13', 'terrestrial ecotoxicity', 'TETPinf'),
 ('ReCiPe Midpoint (H) V1.13', 'freshwater ecotoxicity', 'FETPinf'),
 ('ReCiPe Midpoint (H) V1.13', 'human toxicity', 'HTPinf'),
 ('ReCiPe Midpoint (H) V1.13', 'marine ecotoxicity', 'METPinf'),
 ('ReCiPe Midpoint (H) V1.13', 'terrestrial ecotoxicity', 'TETPinf'),
 ('ReCiPe Midpoint (I) V1.13', 'freshwater ecotoxicity', 'FETP100'),
 ('ReCiPe Midpoint (I) V1.13', 'human toxicity', 'HTP100'),
 ('ReCiPe Midpoint (I) V1.13', 'marine ecotoxicity', 'METP100'),
 ('ReCiPe Midpoint (I) V1.13', 'terrestrial ecotoxicity', 'TETP100'),
 ('ILCD 2.0 2018 midpoint', 'ecosystem quality', 'freshwater ecotoxicity'),
 ('ILCD 2.0 2018 midpoint', 'human health', 'non-carcinogenic effects'),
 ('ILCD 2.0 2018 midpoint', 'human health', 'carcinogenic effects'),
 ('ecological scarcity 2013', 'mineral resources', 'total'),
 ('ecological scarcity 2013', 'total', 'total'),
 ('ecological scarcity 2013 no LT', 'mineral resources', 'total'),
 ('ecological scarcity 2013 no LT', 'total', 'total'),
 ('cumulative exergy demand',
  'minerals',
  'non-renewable material resources, minerals'),
 ('ILCD 2.0 2018 midpoint', 'resources', 'minerals and metals'),
 ('ILCD 2.0 2018 midpoint no LT', 'resources', 'minerals and metals'),
 ('ReCiPe Midpoint (E) V1.13', 'metal depletion', 'MDP'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'metal depletion', 'MDP'),
 ('ReCiPe Midpoint (H) V1.13', 'metal depletion', 'MDP'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'metal depletion', 'MDP'),
 ('ReCiPe Midpoint (I) V1.13', 'metal depletion', 'MDP'),
 ('ILCD 2.0 2018 midpoint', 'climate change', 'climate change biogenic'),
 ('ILCD 2.0 2018 midpoint', 'climate change', 'climate change fossil'),
 ('ILCD 2.0 2018 midpoint',
  'climate change',
  'climate change land use and land use change'),
 ('ILCD 2.0 2018 midpoint', 'climate change', 'climate change total'),
 ('ILCD 2.0 2018 midpoint',
  'ecosystem quality',
  'freshwater and terrestrial acidification'),
 ('ILCD 2.0 2018 midpoint', 'ecosystem quality', 'freshwater eutrophication'),
 ('ILCD 2.0 2018 midpoint', 'ecosystem quality', 'marine eutrophication'),
 ('ILCD 2.0 2018 midpoint', 'ecosystem quality', 'terrestrial eutrophication'),
 ('ILCD 2.0 2018 midpoint', 'human health', 'ionising radiation'),
 ('ILCD 2.0 2018 midpoint', 'human health', 'ozone layer depletion'),
 ('ILCD 2.0 2018 midpoint', 'human health', 'photochemical ozone creation'),
 ('ILCD 2.0 2018 midpoint', 'human health', 'respiratory effects, inorganics'),
 ('ILCD 2.0 2018 midpoint', 'resources', 'dissipated water'),
 ('ILCD 2.0 2018 midpoint', 'resources', 'fossils'),
 ('ILCD 2.0 2018 midpoint', 'resources', 'land use'),
 ('ILCD 2.0 2018 midpoint no LT', 'climate change', 'climate change biogenic'),
 ('ILCD 2.0 2018 midpoint no LT', 'climate change', 'climate change fossil'),
 ('ILCD 2.0 2018 midpoint no LT',
  'climate change',
  'climate change land use and land use change'),
 ('ILCD 2.0 2018 midpoint no LT', 'climate change', 'climate change total'),
 ('ILCD 2.0 2018 midpoint no LT',
  'ecosystem quality',
  'freshwater and terrestrial acidification'),
 ('ILCD 2.0 2018 midpoint no LT',
  'ecosystem quality',
  'freshwater ecotoxicity'),
 ('ILCD 2.0 2018 midpoint no LT',
  'ecosystem quality',
  'freshwater eutrophication'),
 ('ILCD 2.0 2018 midpoint no LT',
  'ecosystem quality',
  'marine eutrophication'),
 ('ILCD 2.0 2018 midpoint no LT',
  'ecosystem quality',
  'terrestrial eutrophication'),
 ('ILCD 2.0 2018 midpoint no LT', 'human health', 'carcinogenic effects'),
 ('ILCD 2.0 2018 midpoint no LT', 'human health', 'ionising radiation'),
 ('ILCD 2.0 2018 midpoint no LT', 'human health', 'non-carcinogenic effects'),
 ('ILCD 2.0 2018 midpoint no LT', 'human health', 'ozone layer depletion'),
 ('ILCD 2.0 2018 midpoint no LT',
  'human health',
  'photochemical ozone creation'),
 ('ILCD 2.0 2018 midpoint no LT',
  'human health',
  'respiratory effects, inorganics'),
 ('ILCD 2.0 2018 midpoint no LT', 'resources', 'dissipated water'),
 ('ILCD 2.0 2018 midpoint no LT', 'resources', 'fossils'),
 ('ILCD 2.0 2018 midpoint no LT', 'resources', 'land use'),
 ('IPCC 2013', 'climate change', 'GTP 100a'),
 ('IPCC 2013', 'climate change', 'GTP 20a'),
 ('IPCC 2013', 'climate change', 'GWP 100a'),
 ('IPCC 2013', 'climate change', 'GWP 20a'),
 ('IPCC 2013 no LT', 'climate change', 'GTP 100a'),
 ('IPCC 2013 no LT', 'climate change', 'GTP 20a'),
 ('IPCC 2013 no LT', 'climate change', 'GWP 100a'),
 ('IPCC 2013 no LT', 'climate change', 'GWP 20a'),
 ('ReCiPe Midpoint (E) V1.13', 'agricultural land occupation', 'ALOP'),
 ('ReCiPe Midpoint (E) V1.13', 'climate change', 'GWP500'),
 ('ReCiPe Midpoint (E) V1.13', 'fossil depletion', 'FDP'),
 ('ReCiPe Midpoint (E) V1.13', 'freshwater eutrophication', 'FEP'),
 ('ReCiPe Midpoint (E) V1.13', 'ionising radiation', 'IRP_HE'),
 ('ReCiPe Midpoint (E) V1.13', 'marine eutrophication', 'MEP'),
 ('ReCiPe Midpoint (E) V1.13', 'natural land transformation', 'NLTP'),
 ('ReCiPe Midpoint (E) V1.13', 'ozone depletion', 'ODPinf'),
 ('ReCiPe Midpoint (E) V1.13', 'particulate matter formation', 'PMFP'),
 ('ReCiPe Midpoint (E) V1.13', 'photochemical oxidant formation', 'POFP'),
 ('ReCiPe Midpoint (E) V1.13', 'terrestrial acidification', 'TAP500'),
 ('ReCiPe Midpoint (E) V1.13', 'urban land occupation', 'ULOP'),
 ('ReCiPe Midpoint (E) V1.13', 'water depletion', 'WDP'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'agricultural land occupation', 'ALOP'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'climate change', 'GWP500'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'fossil depletion', 'FDP'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'freshwater ecotoxicity', 'FETPinf'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'freshwater eutrophication', 'FEP'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'human toxicity', 'HTPinf'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'ionising radiation', 'IRP_HE'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'marine ecotoxicity', 'METPinf'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'marine eutrophication', 'MEP'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'natural land transformation', 'NLTP'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'ozone depletion', 'ODPinf'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'particulate matter formation', 'PMFP'),
 ('ReCiPe Midpoint (E) V1.13 no LT',
  'photochemical oxidant formation',
  'POFP'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'terrestrial acidification', 'TAP500'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'terrestrial ecotoxicity', 'TETPinf'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'urban land occupation', 'ULOP'),
 ('ReCiPe Midpoint (E) V1.13 no LT', 'water depletion', 'WDP'),
 ('ReCiPe Midpoint (H) V1.13', 'agricultural land occupation', 'ALOP'),
 ('ReCiPe Midpoint (H) V1.13', 'climate change', 'GWP100'),
 ('ReCiPe Midpoint (H) V1.13', 'fossil depletion', 'FDP'),
 ('ReCiPe Midpoint (H) V1.13', 'freshwater eutrophication', 'FEP'),
 ('ReCiPe Midpoint (H) V1.13', 'ionising radiation', 'IRP_HE'),
 ('ReCiPe Midpoint (H) V1.13', 'marine eutrophication', 'MEP'),
 ('ReCiPe Midpoint (H) V1.13', 'natural land transformation', 'NLTP'),
 ('ReCiPe Midpoint (H) V1.13', 'ozone depletion', 'ODPinf'),
 ('ReCiPe Midpoint (H) V1.13', 'particulate matter formation', 'PMFP'),
 ('ReCiPe Midpoint (H) V1.13', 'photochemical oxidant formation', 'POFP'),
 ('ReCiPe Midpoint (H) V1.13', 'terrestrial acidification', 'TAP100'),
 ('ReCiPe Midpoint (H) V1.13', 'urban land occupation', 'ULOP'),
 ('ReCiPe Midpoint (H) V1.13', 'water depletion', 'WDP'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'agricultural land occupation', 'ALOP'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'climate change', 'GWP100'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'fossil depletion', 'FDP'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'freshwater ecotoxicity', 'FETPinf'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'freshwater eutrophication', 'FEP'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'human toxicity', 'HTPinf'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'ionising radiation', 'IRP_HE'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'marine ecotoxicity', 'METPinf'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'marine eutrophication', 'MEP'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'natural land transformation', 'NLTP'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'ozone depletion', 'ODPinf'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'particulate matter formation', 'PMFP'),
 ('ReCiPe Midpoint (H) V1.13 no LT',
  'photochemical oxidant formation',
  'POFP'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'terrestrial acidification', 'TAP100'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'terrestrial ecotoxicity', 'TETPinf'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'urban land occupation', 'ULOP'),
 ('ReCiPe Midpoint (H) V1.13 no LT', 'water depletion', 'WDP'),
 ('ReCiPe Midpoint (I) V1.13', 'agricultural land occupation', 'ALOP'),
 ('ReCiPe Midpoint (I) V1.13', 'climate change', 'GWP20'),
 ('ReCiPe Midpoint (I) V1.13', 'fossil depletion', 'FDP'),
 ('ReCiPe Midpoint (I) V1.13', 'freshwater eutrophication', 'FEP'),
 ('ReCiPe Midpoint (I) V1.13', 'ionising radiation', 'IRP_I'),
 ('ReCiPe Midpoint (I) V1.13', 'marine eutrophication', 'MEP'),
 ('ReCiPe Midpoint (I) V1.13', 'natural land transformation', 'NLTP'),
 ('ReCiPe Midpoint (I) V1.13', 'ozone depletion', 'ODPinf'),
 ('ReCiPe Midpoint (I) V1.13', 'particulate matter formation', 'PMFP'),
 ('ReCiPe Midpoint (I) V1.13', 'photochemical oxidant formation', 'POFP'),
 ('ReCiPe Midpoint (I) V1.13', 'terrestrial acidification', 'TAP20'),
 ('ReCiPe Midpoint (I) V1.13', 'urban land occupation', 'ULOP'),
 ('ReCiPe Midpoint (I) V1.13', 'water depletion', 'WDP'),
 ('cumulative energy demand',
  'biomass',
  'renewable energy resources, biomass'),
 ('cumulative energy demand',
  'fossil',
  'non-renewable energy resources, fossil'),
 ('cumulative energy demand',
  'geothermal',
  'renewable energy resources, geothermal, converted'),
 ('cumulative energy demand',
  'nuclear',
  'non-renewable energy resources, nuclear'),
 ('cumulative energy demand',
  'primary forest',
  'non-renewable energy resources, primary forest'),
 ('cumulative energy demand',
  'solar',
  'renewable energy resources, solar, converted'),
 ('cumulative energy demand',
  'water',
  'renewable energy resources, potential (in barrage water), converted'),
 ('cumulative energy demand',
  'wind',
  'renewable energy resources, kinetic (in wind), converted'),
 ('cumulative exergy demand',
  'biomass',
  'renewable energy resources, biomass'),
 ('cumulative exergy demand',
  'fossil',
  'non-renewable energy resources, fossil'),
 ('cumulative exergy demand',
  'nuclear',
  'non-renewable energy resources, nuclear'),
 ('cumulative exergy demand',
  'primary forest',
  'non-renewable energy resources, primary forest'),
 ('cumulative exergy demand',
  'solar',
  'renewable energy resources, solar, converted'),
 ('cumulative exergy demand',
  'water',
  'renewable energy resources, potential (in barrage water), converted'),
 ('cumulative exergy demand',
  'water resources',
  'renewable material resources, water'),
 ('cumulative exergy demand',
  'wind',
  'renewable energy resources, kinetic (in wind), converted'),
 ('ecological footprint', 'total', 'CO2'),
 ('ecological footprint', 'total', 'land occupation'),
 ('ecological footprint', 'total', 'nuclear'),
 ('ecological footprint', 'total', 'total'),
 ('ecological scarcity 2013', 'POP into water', 'total'),
 ('ecological scarcity 2013', 'carcinogenic substances into air', 'total'),
 ('ecological scarcity 2013', 'energy resources', 'total'),
 ('ecological scarcity 2013', 'global warming', 'total'),
 ('ecological scarcity 2013', 'heavy metals into air', 'total'),
 ('ecological scarcity 2013', 'heavy metals into soil', 'total'),
 ('ecological scarcity 2013', 'heavy metals into water', 'total'),
 ('ecological scarcity 2013', 'land use', 'total'),
 ('ecological scarcity 2013', 'main air pollutants and PM', 'total'),
 ('ecological scarcity 2013', 'non radioactive waste to deposit', 'total'),
 ('ecological scarcity 2013', 'ozone layer depletion', 'total'),
 ('ecological scarcity 2013', 'pesticides into soil', 'total'),
 ('ecological scarcity 2013', 'radioactive substances into air', 'total'),
 ('ecological scarcity 2013', 'radioactive substances into water', 'total'),
 ('ecological scarcity 2013', 'radioactive waste to deposit', 'total'),
 ('ecological scarcity 2013', 'water pollutants', 'total'),
 ('ecological scarcity 2013', 'water resources', 'total'),
 ('ecological scarcity 2013 no LT', 'POP into water', 'total'),
 ('ecological scarcity 2013 no LT',
  'carcinogenic substances into air',
  'total'),
 ('ecological scarcity 2013 no LT', 'energy resources', 'total'),
 ('ecological scarcity 2013 no LT', 'global warming', 'total'),
 ('ecological scarcity 2013 no LT', 'heavy metals into air', 'total'),
 ('ecological scarcity 2013 no LT', 'heavy metals into soil', 'total'),
 ('ecological scarcity 2013 no LT', 'heavy metals into water', 'total'),
 ('ecological scarcity 2013 no LT', 'land use', 'total'),
 ('ecological scarcity 2013 no LT', 'main air pollutants and PM', 'total'),
 ('ecological scarcity 2013 no LT',
  'non radioactive waste to deposit',
  'total'),
 ('ecological scarcity 2013 no LT', 'ozone layer depletion', 'total'),
 ('ecological scarcity 2013 no LT', 'pesticides into soil', 'total'),
 ('ecological scarcity 2013 no LT',
  'radioactive substances into air',
  'total'),
 ('ecological scarcity 2013 no LT',
  'radioactive substances into water',
  'total'),
 ('ecological scarcity 2013 no LT', 'radioactive waste to deposit', 'total'),
 ('ecological scarcity 2013 no LT', 'water pollutants', 'total'),
 ('ecological scarcity 2013 no LT', 'water resources', 'total'),
 ('ecosystem damage potential', 'total', 'linear, land occupation'),
 ('ecosystem damage potential', 'total', 'linear, land transformation'),
 ('ecosystem damage potential', 'total', 'linear, land use, total')]

For this example, we will focus on the ILCD 2018 impact categories of climate change, total and freshwater and terrestrial acidification.

One can then define the impact category directly as a triplet:

In [5]:
lcia_aci = ('ILCD 2.0 2018 midpoint','ecosystem quality','freshwater and terrestrial acidification')
lcia_aci
Out[5]:
('ILCD 2.0 2018 midpoint',
 'ecosystem quality',
 'freshwater and terrestrial acidification')

Or look for the impact category of interest using a for-loop:

In [6]:
for m in bw.methods:
    if 'ILCD 2.0 2018' in str(m):
        if 'climate change total' in str(m):
            if 'no LT' not in str(m):
                lcia_cc = m   
lcia_cc
Out[6]:
('ILCD 2.0 2018 midpoint', 'climate change', 'climate change total')

An alternative to for-loops in Python is called a "comprehension list". It can also be used to select the impact category of interest

In [7]:
lcia_cc_alt = [m for m in bw.methods if 'ILCD 2.0 2018' in str(m) 
                       and 'climate change total' in str(m)
                       and 'no LT' not in str(m)][0]
lcia_cc_alt
Out[7]:
('ILCD 2.0 2018 midpoint', 'climate change', 'climate change total')
In [8]:
impacts = [lcia_cc,lcia_aci]
impacts
Out[8]:
[('ILCD 2.0 2018 midpoint', 'climate change', 'climate change total'),
 ('ILCD 2.0 2018 midpoint',
  'ecosystem quality',
  'freshwater and terrestrial acidification')]

One can then extract information on the characterisation method using the following code

In [9]:
bw.Method(lcia_cc).metadata
Out[9]:
{'description': '',
 'filename': 'LCIA_implementation_3.6.xlsx',
 'unit': 'kg CO2-Eq',
 'abbreviation': 'ilcd-20-2018-midpointcc.8c7c9d36c52de34b42b7e7bc7647e24c',
 'num_cfs': 196}

STEP 2 - Reference Life Cycle Assessment Model

Once the scope of the study is defined, the reference life cycle assessment model has to be set up. It is a parametrization of the chosen geothermal installation type. The inventory flows are described with fixed or variable parameters, either derived from scaling relationships, regressions between observed inventory flows and parameters, or typical values for the fixed parameters.

As mentioned in STEP 1, we will focus on the modelling of

  • the well drilling, and
  • the electricity consumption.

To do so, we will first define all the variable and fixed parameters. In a second step, we will define the activities describing the different parts of the geothermal installation we are modelling. Based on these parts, we will finally define the total reference LCA model.

Parameter definition

Parameters can be

  • A numerical value newFloatParam(...)
  • A boolean value (0 or 1) newBoolParam(...)
  • An excluding choice referring internally to boolean parameters newEnumParam(...)

For each parameter, we can define:

  • The name (short) et the label (long)
  • The default value
  • The limits of the probability distribution function
  • The unit
  • The "group" used to arrange parameters
  • A description

Different types of distribution functions are implemented in lca-algebraic for the Float parameters DistributionType.

  • LINEAR : uniform distribution between min and max
  • NORMAL : Normal distribution, centered on default value (mean), with deviation of std and truncated between min and max
  • TRIANGLE : Triangle distribution between min and max (set to zero probability), with highest probability at default value
  • BETA : Beta distribution with extra params a and b, using default value as 'loc' (0 of beta distribution) and std as 'scale' (1 of beta distribution)

Well drilling

The well drilling part consists of (1) the drilling platform construction, (2) the drilling in itself, and (3) the well testing.

The drilling platform is described simply by its area.

In [10]:
## (1) Drilling platform
A_platform = newFloatParam(
    'A_platform', # short name
    default=20000.0, # default values
    min=6500.0, # minimum value of the parameter range 
    max=20000.0, # maximum value of the parameter range 
    distrib=DistributionType.LINEAR, # distribution assigned to the parameter, uniform (linear) by default
    group="Drilling", # when listing the parameters, grouped according to this group
    label_fr = 'Area drilling platform', # long label
    unit="m2", # unit
    description="Area of the drilling platform in m2")

The inventory modelling of the drilling was based mostly on regression equations taken from: https://op.europa.eu/en/publication-detail/-/publication/b100f4de-932e-11ea-aac4-01aa75ed71a1. The equations below describe which parameters should be defined.

The actual meters drilled ($MD$) are the product of the well length ($L_w$) and a ratio ranging between 1 and 1.5 ($Ratio_{MD,w})$.

$MD= L_w*Ratio_{MD,w}$

The drilling in itself requires cement, whose volume is approximated from the meters drilled. We only model the use of cement.

$V_{cement}=10^{1.23*log⁡(MD)-2.15}$

The energy requirement of the diesel-powered rig is estimated from the meters drilled.

$E_{drilling}=10^{0.000319*MD+2.04}$

The amount of steel necessary for the well casing is estimated from the well length.

$M_{steel}=10^{1.22*log⁡(L_w)-1.78}$

And the amount of drilling mud necessary, consisting of 36% water, 11% bentonite, 10% calcium carbonate, 8% carboxmethylcellulose, 27% inorganic chemicals, 1% citric acid, 1% soda ash, 3% sodium chloride, 1% sodium hydroxide, is modelled with the following equation

$V_{drilling mud}=0.157*MD$

In [11]:
## (2) Drilling
well_length = newFloatParam(
    'well_length', 
    default=2888, min=1300.0, max=5500.0, distrib=DistributionType.LINEAR,
    group="Drilling",
    label_fr = 'Length well',
    unit="m",
    description="Length of well in m")

Ratio_MD_well_length = newFloatParam(
    'Ratio_MD_well_length', 
    default=1.13, min=1, max=1.5, distrib=DistributionType.LINEAR,
    group="Drilling",
    label_fr = 'Ratio meters drilled and well length',
    unit="-",
    description="Ratio of meters drilled to the well length")

N_well_injection = newFloatParam(
    'N_well_injection', 
    default=1.0, min=1.0, max=2.0, distrib=DistributionType.LINEAR,
    group="Drilling",
    label_fr = 'Number injection wells',
    unit="-",
    description="number of injection wells")

N_well_production = newFloatParam(
    'N_well_production', 
    default=1.0, min=1.0, max=2.0, distrib=DistributionType.LINEAR,
    group="Drilling",
    label_fr = 'Number production wells',
    unit="-",
    description="number of production wells")
    
km_drill_transport = newFloatParam(
    'km_drill_transport', 
    default=500, distrib=DistributionType.FIXED,
    group="Transport",
    label_fr = 'Distance for the transport of drilling equipment',
    unit="km",
    description="km to transport the drilling equipment")

# Composition drilling mud
P_bentonite_drillmud = newFloatParam(
    'P_bentonite_drillmud', 
    default=0.11, distrib=DistributionType.FIXED,
    group="Drilling",
    label_fr = 'Content bentonite drilling mud',
    unit="-",
    description="Percentage of bentonite in the drilling mud")

P_calciumcarbonate_drillmud = newFloatParam(
    'P_calciumcarbonate_drillmud', 
    default=0.1, distrib=DistributionType.FIXED,
    group="Drilling",
    label_fr = 'Content calcium carbonate drilling mud',
    unit="-",
    description="Percentage of calcium carbonate in the drilling mud")

P_carboxymethylcellulose_drillmud = newFloatParam(
    'P_carboxymethylcellulose_drillmud', 
    default=0.08, distrib=DistributionType.FIXED,
    group="Drilling",
    label_fr = 'Content carboxymethyl cellulose drilling mud',
    unit="-",
    description="Percentage of carboxymethylcellulose in the drilling mud")

P_chemicalinorganic_drillmud = newFloatParam(
    'P_chemicalinorganic_drillmud', 
    default=0.27, distrib=DistributionType.FIXED,
    group="Drilling",
    label_fr = 'Content chemical inorganic drilling mud',
    unit="-",
    description="Percentage of inorganic chemical in the drilling mud")

P_citricacid_drillmud = newFloatParam(
    'P_citricacid_drillmud', 
    default=0.01, distrib=DistributionType.FIXED,
    group="Drilling",
    label_fr = 'Content citric acid drilling mud',
    unit="-",
    description="Percentage of citric acid in the drilling mud")

P_sodaash_drillmud = newFloatParam(
    'P_sodaash_drillmud', 
    default=0.01, distrib=DistributionType.FIXED,
    group="Drilling",
    label_fr = 'Content sodaash drilling mud',
    unit="-",
    description="Percentage of soda ash in the drilling mud")

P_sodiumchloride_drillmud = newFloatParam(
    'P_sodiumchloride_drillmud', 
    default=0.03, distrib=DistributionType.FIXED,
    group="Drilling",
    label_fr = 'Content sodium chloride drilling mud',
    unit="-",
    description="Percentage of sodium chloride in the drilling mud")

P_sodiumhydroxide_drillmud = newFloatParam(
    'P_sodiumhydroxide_drillmud', 
    default=0.01, distrib=DistributionType.FIXED,
    group="Drilling",
    label_fr = 'Content sodium hydroxide drilling mud',
    unit="-",
    description="Percentage of sodium hydroxide in the drilling mud")

P_water_drillmud = newFloatParam(
    'P_water_drillmud', 
    default=0.36, distrib=DistributionType.FIXED,
    group="Drilling",
    label_fr = 'Content water drilling mud',
    unit="-",
    description="Percentage of water in the drilling mud")

The well testing implies emissions of $CO_{2}$ in the atmosphere

In [12]:
## (3) Well testing
M_CO2_release_welltesting_kg = newFloatParam(
    'M_CO2_release_welltesting_kg', 
    default=3.12E5, min=0, max=3.12E5, distrib=DistributionType.LINEAR,
    group="Well testing",
    label_fr = 'CO2 released',
    unit="kg",    
    description="kg of CO2 emitted during the well testing phase")

Electricity consumption

We model the electricity consumption of the operation and maintenance phase from the power of the production and injection pumps ($P_{prod}$ and $P_{inj}$), the number of production and injection wells ($N_{prod}$ and $N_{inj}$), and the number of operating hours $OH$.

$E_{OM}=(P_{prod}\cdot N_{prod}+P_{inj} \cdot N_{inj}) \cdot OH$

In [13]:
power_prod_kW = newFloatParam(
    'power_prod_kW',
    default = 500.0, min=200.0, max=1200.0, distrib=DistributionType.LINEAR,
    group="Power plant",
    label_fr = 'Power production pump',
    unit="kW",
    description = "Power of the production pump")   

power_inj_kW = newFloatParam(
    'power_inj_kW',
    default = 0.0, min=0.0, max=500.0, distrib=DistributionType.LINEAR,
    group="Power plant",
    label_fr = 'Power injection pump',
    unit="kW",
    description = "Power of the injection pumps")

OH = newFloatParam(
    'OH', 
    default=8000, min=5000, max=8500,  distrib=DistributionType.LINEAR,
    group="General",
    label_fr = 'Operating hours',
    unit="h",
    description="Operating hours of the geothermal power plant")

Besides the parts of the geothermal installation, it is also necessary to estimate the total amount of heat produced to later be able to express the environmental impacts per kWh heat produced

Heat production

The thermal output is estimated from the thermal output ($P_{th}$), and the average percentages of performance loss per year ($Loss_{pyear}$).

$MW_{th}=P_{th}*(1-Loss_{pyear}*LT)$

In [14]:
LT_years = newFloatParam(
    'LT_years', 
    default=30, min=20, max=40,  distrib=DistributionType.LINEAR,
    group="General",
    label_fr = 'Lifetime',
    unit="y",    
    description="Life time of the geothermal power plant in years")

Pth = newFloatParam(
    'Pth', 
    default=22.5, min=10, max=40, distrib=DistributionType.LINEAR,
    group="General",
    label_fr = 'Thermal power output',
    unit="MW",
    description="Thermal power output fed into the grid") 

Loss_pyear = newFloatParam(
    'Loss_pyear', 
    default=(2.5/100)/30, distrib=DistributionType.FIXED,
    group="General",
    label_fr = 'Loss',
    unit="-/y",    
    description="Loss of productivity per year")
In [15]:
# List all the parameters
list_parameters()
# Overall one has 11 variable parameters and 11 fixed parameters
Out[15]:
Phase param default min maxstd distrib unit
Well testingCO2 released 312000 0312000 linear kg
General Operating hours 8000 5000 8500 linear h
General Lifetime 30 20 40 linear y
General Thermal power output 22.5 10 40 linear MW
General Loss 0.000833333 fixed -/y
Transport Distance for the transport of drilling equipment 500 fixed km
Drilling Area drilling platform 20000 6500 20000 linear m2
Drilling Length well 2888 1300 5500 linear m
Drilling Ratio meters drilled and well length 1.13 1 1.5 linear -
Drilling Number injection wells 1 1 2 linear -
Drilling Number production wells 1 1 2 linear -
Drilling Content bentonite drilling mud 0.11 fixed -
Drilling Content calcium carbonate drilling mud 0.1 fixed -
Drilling Content carboxymethyl cellulose drilling mud 0.08 fixed -
Drilling Content chemical inorganic drilling mud 0.27 fixed -
Drilling Content citric acid drilling mud 0.01 fixed -
Drilling Content sodaash drilling mud 0.01 fixed -
Drilling Content sodium chloride drilling mud 0.03 fixed -
Drilling Content sodium hydroxide drilling mud 0.01 fixed -
Drilling Content water drilling mud 0.36 fixed -
Power plant Power production pump 500 200 1200 linear kW
Power plant Power injection pump 0 0 500 linear kW

Activity definition

"Activity" is a synonym for process so for the single parts of the geothermal installation. Acitvities include several "exchanges" meaning flows.

Some background activities can be used directly as taken from the technosphere and biosphere databases. lca-algebraic implements functions to search these databases: findTechAct(name, loc*) and findBioAct(name, loc*). Both look for exact matches by default and throw errors in case multiple matches are found.

Background activities

In [16]:
findBioAct(name="Water*") #careful it is case-sensitive, and the (*) is necessary to look for any ending
                          # one should specify the name of the activity, and optionally the location
---------------------------------------------------------------------------
Exception                                 Traceback (most recent call last)
<ipython-input-16-ba6260dd53cb> in <module>
----> 1 findBioAct(name="Water*") #careful it is case-sensitive, and the (*) is necessary to look for any ending
      2                           # one should specify the name of the activity, and optionally the location

C:\ProgramData\Anaconda3\envs\py37\lib\site-packages\lca_algebraic\helpers.py in findBioAct(name, loc, **kwargs)
    344     """Alias for findActivity(name, ... db_name=BIOSPHERE3_DB_NAME)
    345     """
--> 346     return findActivity(name=name, loc=loc, db_name=BIOSPHERE3_DB_NAME, **kwargs)
    347 
    348 

C:\ProgramData\Anaconda3\envs\py37\lib\site-packages\lca_algebraic\helpers.py in findActivity(name, loc, in_name, code, categories, category, db_name, single, unit)
    334     if single and len(acts) > 1:
    335         raise Exception("Several activity found in '%s' with name '%s' and location '%s':\n%s" % (
--> 336             db_name, name, loc, str(acts)))
    337     if len(acts) == 1:
    338         return acts[0]

Exception: Several activity found in 'biosphere3' with name 'None' and location 'None':
['Water' (cubic meter, None, ('water', 'surface water')), 'Water' (cubic meter, None, ('water',)), 'Water' (cubic meter, None, ('water', 'ocean')), 'Water' (cubic meter, None, ('water', 'ground-')), 'Water' (cubic meter, None, ('water', 'fossil well')), 'Water' (cubic meter, None, ('water', 'ground-, long-term')), 'Water' (cubic meter, None, ('air', 'non-urban air or from high stacks')), 'Water' (cubic meter, None, ('air', 'lower stratosphere + upper troposphere')), 'Water' (cubic meter, None, ('air',)), 'Water' (cubic meter, None, ('air', 'urban air close to ground')), 'Water' (cubic meter, None, ('air', 'low population density, long-term')), 'Water, river' (cubic meter, None, ('natural resource', 'in water')), 'Water, lake' (cubic meter, None, ('natural resource', 'in water')), 'Water, in air' (cubic meter, None, ('natural resource', 'in air')), 'Water, salt, sole' (cubic meter, None, ('natural resource', 'in water')), 'Water, well, in ground' (cubic meter, None, ('natural resource', 'in water')), 'Water, salt, ocean' (cubic meter, None, ('natural resource', 'in water')), 'Water, unspecified natural origin' (cubic meter, None, ('natural resource', 'in water')), 'Water, cooling, unspecified natural origin' (cubic meter, None, ('natural resource', 'in water')), 'Water, unspecified natural origin' (cubic meter, None, ('natural resource', 'fossil well')), 'Water, unspecified natural origin' (cubic meter, None, ('natural resource', 'in ground')), 'Water, turbine use, unspecified natural origin' (cubic meter, None, ('natural resource', 'in water'))]

In case one is not sure about the exact name of the activity one is looking for, one should specify single = False

In [17]:
findBioAct("Water*", single = False)
Out[17]:
['Water' (cubic meter, None, ('water', 'surface water')),
 'Water' (cubic meter, None, ('water',)),
 'Water' (cubic meter, None, ('water', 'ocean')),
 'Water' (cubic meter, None, ('water', 'ground-')),
 'Water' (cubic meter, None, ('water', 'fossil well')),
 'Water' (cubic meter, None, ('water', 'ground-, long-term')),
 'Water' (cubic meter, None, ('air', 'non-urban air or from high stacks')),
 'Water' (cubic meter, None, ('air', 'lower stratosphere + upper troposphere')),
 'Water' (cubic meter, None, ('air',)),
 'Water' (cubic meter, None, ('air', 'urban air close to ground')),
 'Water' (cubic meter, None, ('air', 'low population density, long-term')),
 'Water, river' (cubic meter, None, ('natural resource', 'in water')),
 'Water, lake' (cubic meter, None, ('natural resource', 'in water')),
 'Water, in air' (cubic meter, None, ('natural resource', 'in air')),
 'Water, salt, sole' (cubic meter, None, ('natural resource', 'in water')),
 'Water, well, in ground' (cubic meter, None, ('natural resource', 'in water')),
 'Water, salt, ocean' (cubic meter, None, ('natural resource', 'in water')),
 'Water, unspecified natural origin' (cubic meter, None, ('natural resource', 'in water')),
 'Water, cooling, unspecified natural origin' (cubic meter, None, ('natural resource', 'in water')),
 'Water, unspecified natural origin' (cubic meter, None, ('natural resource', 'fossil well')),
 'Water, unspecified natural origin' (cubic meter, None, ('natural resource', 'in ground')),
 'Water, turbine use, unspecified natural origin' (cubic meter, None, ('natural resource', 'in water'))]

The activities to be used in the user-defined activities or in the final reference model directly can be searched and saved.

In [18]:
# Drilling platform
concrete = findTechAct('concrete production 40MPa',loc='RoW')
excavation = findTechAct('excavation, hydraulic digger',loc='RER')
land_occupation = findBioAct('Occupation, industrial area')
# Drilling
steel_unalloyed = findTechAct('steel production, converter, unalloyed',loc='RER')
steel_unalloyed_manufacturing = findTechAct('metal working, average for steel product manufacturing',loc='RER')
cement = findTechAct('cement production, Portland',loc='Europe without Switzerland')
diesel = findTechAct('diesel, burned in diesel-electric generating set, 10MW')
transport_lorry = findTechAct('transport, freight, lorry 16-32 metric ton, EURO4',loc='RER')
# Drilling mud
water = findBioAct('Water, unspecified natural origin',categories=('natural resource', 'in water'))
bentonite = findTechAct('activated bentonite production',loc='RoW')
calciumcarbonate = findTechAct('calcium carbonate production, precipitated',loc='RER')
carboxymethylcellulose = findTechAct('carboxymethyl cellulose production, powder',loc='RER')
citricacid  = findTechAct(code='7a678cd8026b10484159dcc3d0cc889a')
chemical_inorganic = findTechAct('chemical production, inorganic')
sodaash = findTechAct('soda ash, dense, to generic market for neutralising agent',loc='GLO')
sodiumchloride = findTechAct('sodium chloride production, powder',loc='RER')
sodiumhydroxide = findTechAct('sodium hydroxide to generic market for neutralising agent')
# Well testing
CO2_alt = findBioAct('Carbon dioxide, fossil',categories= ('air',))
# Operation and maintenance
electricity = findTechAct('market group for electricity, high voltage',loc="Europe without Switzerland")

User-defined activities

The well drilling activity needs to be modelled using separate activities. This can be done either by modifying existing activities from the background database after first copying them (copyActivity()) or create a new activity from scratch newActivity(). The exchanges can then either be modified or defined. All these activities are created/copied in the USER_DB defined at the beginning.

Well drilling

In [19]:
drilling_platform = newActivity(db_name= USER_DB, #name of the database
                               name = "onshore platform production, geothermal, tailor made", 
                                # name of the new activity
                               unit= "m2", #unit
                               exchanges={ # what are the technosphere and biosphere flows defining the activity
                                   concrete:0.3, # defined using a dictionary activity key : amount
                                   excavation:0.3,
                                   land_occupation: 1
                               })
In [20]:
drilling_mud = newActivity(USER_DB,
                          "drilling mud, for geothermal well drilling, tailor-made",
                          "kilogram",
                          exchanges={
                              bentonite:P_bentonite_drillmud,
                              calciumcarbonate:P_calciumcarbonate_drillmud,
                              carboxymethylcellulose:P_carboxymethylcellulose_drillmud,
                              chemical_inorganic:P_chemicalinorganic_drillmud,
                              citricacid:P_citricacid_drillmud,
                              sodaash:P_sodaash_drillmud,
                              sodiumchloride:P_sodiumchloride_drillmud,
                              sodiumhydroxide:P_sodiumhydroxide_drillmud,
                              water:P_water_drillmud,
                          })
In [21]:
E_drilling_estimated_MWh = (10**(0.000319 * well_length*Ratio_MD_well_length + 2.04))
E_drilling_diesel = E_drilling_estimated_MWh*3600/0.4

M_cement_estimated = 3150*(10**(1.23*sp.log(well_length*Ratio_MD_well_length,10)-2.15))

M_steel_estimated = 1000*(10**(1.22*sp.log(well_length,10)-1.78))

M_drilling_mud_kg = (0.157 
                     *(well_length * Ratio_MD_well_length)
                     *1300)

drilling_well = newActivity(USER_DB,
                          "deep well drilling, production, for geothermal power, tailor-made",
                          "unit",
                          exchanges={
                              cement:M_cement_estimated,
                              steel_unalloyed:M_steel_estimated,
                              steel_unalloyed_manufacturing:M_steel_estimated,
                              drilling_mud:M_drilling_mud_kg,
                              transport_lorry:km_drill_transport*M_steel_estimated/1000,
                              diesel:E_drilling_diesel
                          })

Final Reference LCA model

In [22]:
E_OM_pyear = (power_prod_kW*N_well_production+power_inj_kW*N_well_injection)*OH

Geothermal_installation = newActivity(USER_DB,
                                      "Geothermal installation",
                                      "unit",
                                      exchanges={
                                          CO2_alt:M_CO2_release_welltesting_kg,
                                          drilling_platform:A_platform,
                                          drilling_well:(N_well_injection+N_well_production),
                                          electricity:E_OM_pyear*LT_years,
                                      })
In [23]:
printAct(Geothermal_installation)
Geothermal installation (1.000000 unit)
input amount unit type
Carbon dioxide, fossil 'Carbon dioxide, fossil' (kilogram, None, ('ai... M_CO2_release_welltesting_kg kilogram biosphere
deep well drilling, production, for geothermal power, tailor-made {user-db} 'deep well drilling, production, for geotherma... N_well_injection + N_well_production unit technosphere
market group for electricity, high voltage#Europe without Switzerland 'market group for electricity, high voltage' (... LT_years*OH*(N_well_injection*power_inj_kW + N... kilowatt hour technosphere
onshore platform production, geothermal, tailor made {user-db} 'onshore platform production, geothermal, tail... A_platform m2 technosphere
In [24]:
# Final model per kWh heat produced
heat_produced = Pth*OH*1000*LT_years*(1-Loss_pyear*LT_years)
Geothermal_installation_perkWh = newActivity(USER_DB,
                                             "Geothermal installation, per kWh heat",
                                             "perkWh",
                                             exchanges={
                                                 Geothermal_installation:1/heat_produced
                                             })
In [26]:
printAct(Geothermal_installation_perkWh)
Geothermal installation, per kWh heat (1.000000 perkWh)
input amount unit type
Geothermal installation {user-db} 'Geothermal installation' (unit, GLO, None) 1/(1000*LT_years*OH*Pth*(-LT_years*Loss_pyear ... unit technosphere

STEP 3 - Identification of the key input variable parameters

In STEP 3 a Global Sensitivity Analysis is conducted on the variable parameters to identify the ones with the highest contribution to the variance of the impact categories considered. Practially, it means that the variable parameters defined in STEP 2 are varied over their defined probability distributions, the outcome of the LCA for the chosen impact categories is then calculated as well as the first order Sobol' indices. The function incer_stochastic_dashboard()is used for this sake.

In [27]:
# incer_stochastic_dashboard generates a specific number of Monte Carlo iterations
# calculates the environmental impacts for the chosen impact categories
# as well as the first order Sobol indices.
# The outcome includes
# - violin graphs of the environmental impacts
# - a cumulative graph of the first order Sobol' indices
# - a "heatmap" showing of the first order Sobol' indices
# - the raw data that can be exported

incer_stochastic_dashboard(Geothermal_installation_perkWh, impacts, n=1000)
Generating samples ...
Transforming samples ...
Processing Sobol indices ...
Processing sobol for ('ILCD 2.0 2018 midpoint', 'climate change', 'climate change total')
Processing sobol for ('ILCD 2.0 2018 midpoint', 'ecosystem quality', 'freshwater and terrestrial acidification')

STEP 4 - Simplified models per impact category

After identifying the most important parameters (the ones with highest Sobol' indices, thus largest contribution to variance), we can generate the simplified models by relying on the function sobol_simplify_model and specifying the level of variance one wishes to explain with the variable parameters (by default 80%).

The other variable parameters are set to their median value and one is left with one simple equation per chosen impact category.

In [28]:
simplified = sobol_simplify_model(
    Geothermal_installation_perkWh, # The model
    impacts, # Impacts to consider
    n=10000, # For large model, you may test other value and ensure ST and sum(S1) are close to 1.0 
    fixed_mode = FixedParamMode.MEDIAN, # We replace minor parameters by median by default,
    min_ratio=0.8, # Min ratio of variability to explain
    num_digits=3) #the number of digits to display for the numerical values in the equation
Generating samples ...
Transforming samples ...
Processing sobol for ('ILCD 2.0 2018 midpoint', 'climate change', 'climate change total')
Processing sobol for ('ILCD 2.0 2018 midpoint', 'ecosystem quality', 'freshwater and terrestrial acidification')
> Method :  climate change - climate change total
S1:  0.9141938585310544
S2:  0.059951845662390896
ST:  1.0936837276063527
Selected params :  ['Pth', 'power_prod_kW', 'N_well_production'] explains:  0.8033171396539857
(0.000434*N_well_production*power_prod_kW + 0.0235*N_well_production + 0.205)/Pth
> Method :  ecosystem quality - freshwater and terrestrial acidification
S1:  0.8639395439963575
S2:  0.11338468487538514
ST:  1.1457893641754917
Selected params :  ['Pth', 'power_prod_kW', 'well_length', 'N_well_production', 'power_inj_kW'] explains:  0.8178486948063983
(2.38e-6*N_well_production*power_prod_kW + 3.49e-6*power_inj_kW + 5.08e-9*(N_well_production + 1.47)*(11.2*10**(0.000397*well_length + 2.04) + 1.82*well_length + 0.259*well_length**1.22 + 0.0586*well_length**1.23) + 1.94e-5)/Pth
In [29]:
# The simplified models can be displayed
simplified[0].expr
Out[29]:
$\displaystyle \frac{0.000434 N_{well production} power_{prod kW} + 0.0235 N_{well production} + 0.205}{Pth}$
In [30]:
simplified[1].expr
Out[30]:
$\displaystyle \frac{2.38 \cdot 10^{-6} N_{well production} power_{prod kW} + 3.49 \cdot 10^{-6} power_{inj kW} + 5.08 \cdot 10^{-9} \left(N_{well production} + 1.47\right) \left(11.2 \cdot 10^{0.000397 well_{length} + 2.04} + 1.82 well_{length} + 0.259 well_{length}^{1.22} + 0.0586 well_{length}^{1.23}\right)}{Pth}$

STEP 5 - Summary and applicability domain of the simplified models

The simplified models can be compared to the reference LCA model using compare_simplified. The outcome of the Monte Carlo simulations carried out for the reference and for each simplified model are compared. An $R^2$ is calculated taking values from 0 to 1 with 1 meaning a perfect match between both models. In the following, blue refers to the reference model and orange to the simplified model.

In [31]:
compare_simplified(Geothermal_installation_perkWh, impacts, simplified)
Generating samples ...
Transforming samples ...
Generating samples ...
Transforming samples ...

The applicability domain of the simplified models is highly dependent on the definition of the system boundaries and the methodological choices made in STEP 1 as well as on the definition of the reference LCA model described in STEP 2, meaning the distributions of the variable parameters and the values of the fixed parameters.

The decisions made in STEP 2 can therefore iteratively be adapted to extend or narrow down the models' applicability domain.

Missing from this demonstration is the comparison of the reference LCA model (STEP 2) and the simplified models (STEP 4) with literature values to ensure their representativeness. In fact, this is a crucial step to increase the confidence in the developped models.

Potential application

The simplified models developed from this protocol are very powerful tools to estimate quickly the potential environmental impacts of geothermal installations of a specific type.

The application of the models requires (1) to identify a geothermal installation that matches the applicability domain of the geothermal installation chosen, (2) to determine the values of the parameters for the geothermal installation, and (3) apply the equations.

As long as applied within the simplified model's applicability domain and after careful checks of the representativeness of the reference and simplified models, the latter can be very useful to give first environmental assessments of energy generating technologies and inform the decision-making process towards a sustainable society.