Rittershoffen Geothermal Heat Plant

Enhanced Geothermal System (EGS) for heat generation

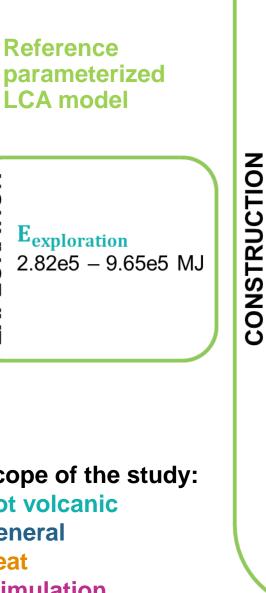
27.04.2020

Mélanie Douziech – melanie.douziech@mines-paristech.fr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No [818242 — GEOENVI]

G E 🔷 E N V I

TABLE OF CONTENTS

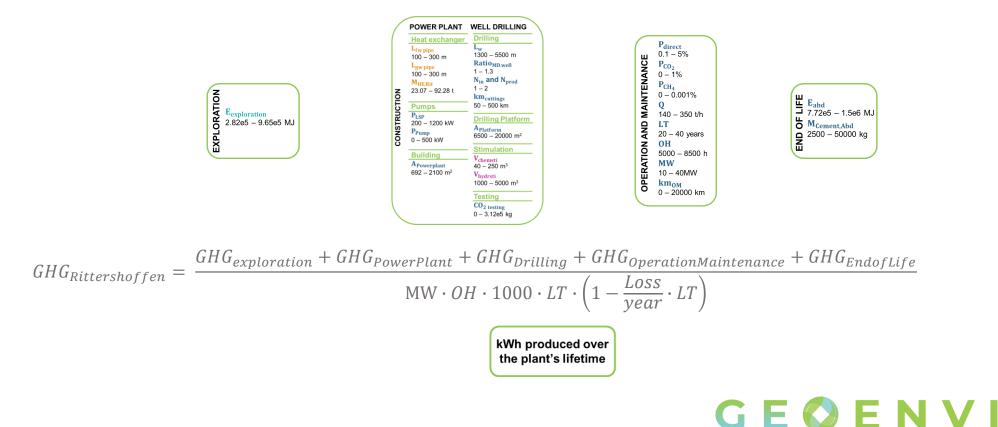

- 1. Scope of the study
- 2. Definition of the reference parameterized LCA model
- 3. Identification of the key variables
- 4. Simplified model for climate change, total
- 5. Validation of the simplified model with literature

Scope of the study: Not volcanic General Heat **Stimulation**

EXPLORATION

3/

POWER PLANT	WELL DRILLING	
Heat exchanger L_{fw pipe} 100 – 300 m L_{gw pipe} 100 – 300 m M_{HE,Rit} 23.07 – 92.28 t	Drilling L_w 1300 – 5500 m Ratio _{MD,well} 1 – 1.3 N_{in} and N_{prod} 1 – 2 $km_{cuttings}$	ITENANCE
Pumps P_{LSP} 200 – 1200 kW P_{Pump} 0 – 500 kW	50 – 500 km Drilling Platform A _{Platform} 6500 – 20000 m ²	OPERATION AND MAINTENANCE
Building A _{Powerplant} 692 – 2100 m ²	Stimulation $V_{chemsti}$ $40 - 250 \text{ m}^3$ $V_{hydrsti}$ $1000 - 5000 \text{ m}^3$ Testing $CO_{2 \text{ testing}}$ 0 - 3.12e5 kg	OPERATI


Pdirect 0.1 – 5% P_{CO_2} 0 – 1% P_{CH4} 0 - 0.001%Q 140 – 350 t/h LT 20-40 years OH 5000 – 8500 h MW 10 – 40MW km_{OM} $0 - 20000 \ \text{km}$

GEOENVI

LIFE **E**_{abd} 7.72e5 - 1.5e6 MJ ЧО M_{Cement,Abd} 2500 – 50000 kg END

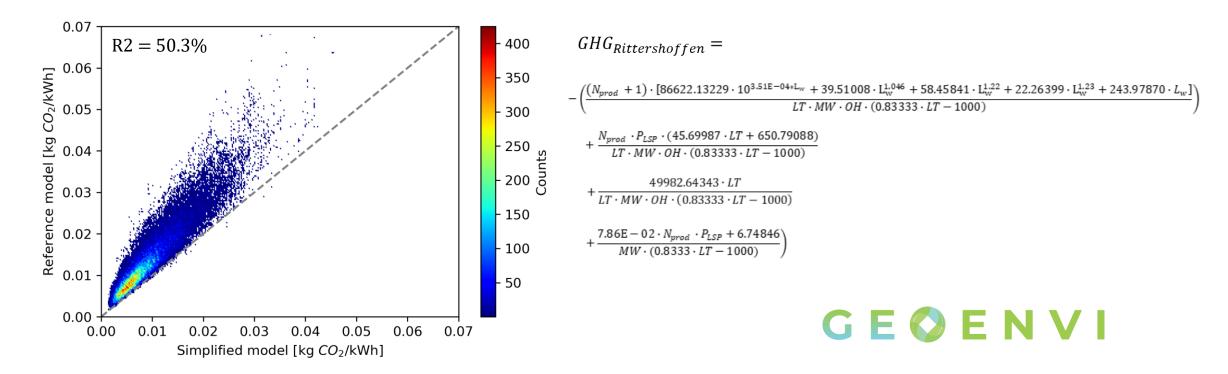
O Step 2 : Reference parameterized LCA model

Reference model to estimate Climate Change, total impact category (ILCD 2018) based on 26 parameters

GEOENVI

○ Step 3 : Identification of the key variables

With Sobol indexes thanks to a global sensitivity study


- First order index (S1)
- Parameters contributing the most to the **variability** of the Climate change, total impact category (ILCD 2018)

		S1
Heat output	MW	57%
Well length	$\mathbf{L}_{\mathbf{w}}$	14%
Power production pump	P _{LSP}	7%
Number of production wells	N _{prod}	3%
Direct emissions	Pdirect	2%
Lifetime	LT	2%
CO ₂ in direct emissions	P_{CO_2}	1%
Operating hours	OH	1%
Explained variance		87%

○ Step 4 : Simplified model for Climate Change total [kg CO₂-eq/kWh]

Based on 6 parameters explaining 83% of the climate change variability from the reference model

Six parameters: Heat output (MW), well length (L_w) , power production pump (P_{LSP}) , number of production wells (N_{prod}) , lifetime (LT) and operating hours (OH)

○ Step 4 : Simplified model for Climate Change total [kg CO₂-eq/kWh]

Applicability Domain : For which installation can the simplified model be used?

- 1) Heat generating power plant (not necessarily with stimulation)
- 2) FR electricity mix
- 3) Low direct emissions (0.1-5%)
- 4) Variables within the following ranges

	Unit	Min	Max
MW	MW	10	40
L_w	m	1300	5500
P _{LSP}	kW	200	1200
N _{prod}	-	1	2
LT	years	20	40
OH	h/y	5000	8500
	L _w P _{LSP} N _{prod} LT	MWMWLwmPLSPkWNprod-LTyears	MW MW 10 L _w m 1300 P _{LSP} kW 200 N _{prod} - 1 LT years 20

○ Step 5 : Comparison with literature - Climate Change total [kg CO₂-eq/kWh]

- So far no comparison with published results was possible
- Difficulties:
 - Few available LCA on heat production from deep geothermal power plants only
 - Fewer available LCA studies within the simplified model's boundaries
- Words of caution
 - Impact category
 - Level of details

Thank you for your attention !

Mélanie Douziech – melanie.douziech@mines-paristech.fr

GEOENVI