Introduction to the Guidelines to perform LCA of geothermal systems

The Italian case study of the Bagnore geothermal power plants as an example of guidelines application.

Maria Laura Parisi CSGI – University Siena

Webinar 27 April 2020

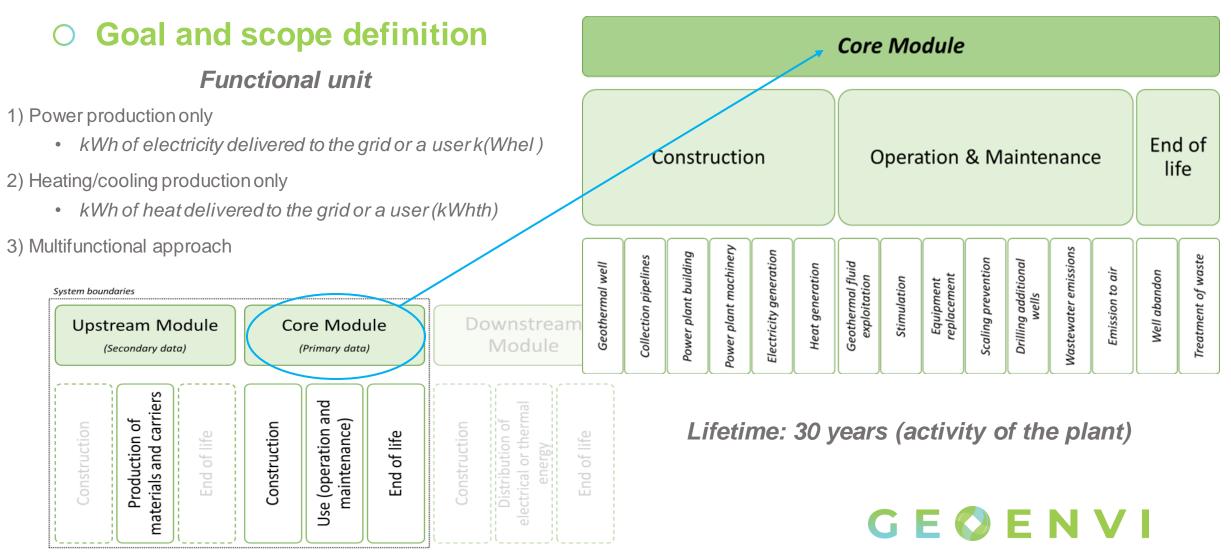
DEPARTMENT OF BIOTECHNOLOGY CHEMISTRY AND PHARMACY Department of Excellence 2018-2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No [818242 — GEOENVI]

○ LCA Guidelines for geothermal installations (*)

Motivation	 To offer guidance for consistency, balance and quality Life Cycle Assessment (LCA) To enhance the credibility of the findings from LCAs on geothermal systems. The guidelines cover the most sensitive aspects of each step of a LCA applied to geothermal systems. 				
Beneficiary	 LCA practitioner and geothermal experts. Challenge to produce in a concise manner guidelines ready to use for any type of geothermal installations fulfilling LCA ISO standards (14040 and 14044). 				
Objective	 To provide guidance on how to establish the life cycle inventories (LCI) of geothermal systems. To provide guidance on selection of life cycle impact assessment (LCIA) and impact category indicators. To provide guidance on how and what to document regarding the LCA of geothermal energy (electricity, heat or combined systems). 				
Scope	 LCA results applying these guidelines could contribute to a sustainability assessment of geothermal projects and does not pretend to be exhaustive and exclusive in examining all potential environmental issues. LCA could be accompanied by other environmental assessment criteria, which can consider site-dependent matters or whose evaluation involves social or qualitative acceptance. 				

LCA Guidelines for geothermal installations (30 pages document): table of contents


- Introduction
- Motivation and Objective
- Methodological Guidelines
- Specific aspects of geothermal energy production
- Goal and scope definition
- Life Cycle Inventory (LCI)
- Life Cycle Impact Assessment (LCIA)
- Reporting and communication
- References

- 4 Technical Appendixes:
- Short guide to the use of Exergy as an allocation scheme in geothermal installations
- Reference average values as a support for modelling the inventory (based on GEOENVI case studies)
- Primary Energy Saving (PES)
- Renewable Energies: Geothermal Heat and Power versus PV and Wind – A case study using exergy and PES

GEOENVI

System boundaries

Multi-functionality: selection of an appropriate allocation procedure

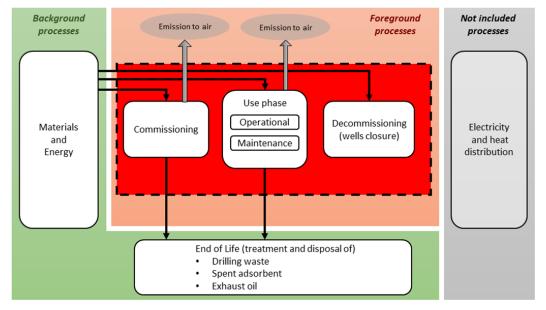
LCA often deals with multi-purpose processes, having multiple products. In the case of geothermal plants, there is a wide variability among the installations and their power production. Two different allocation schemes can be applied to the wide diversity of geothermal installations

Share between the co-products > 75%

system expansion with a substitution model for the co-products

Share between the co-products < 75%

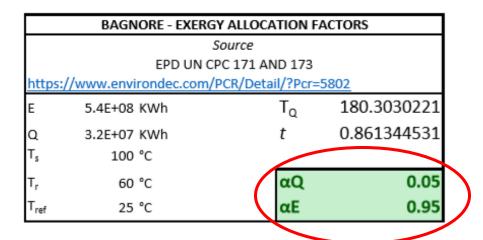
Exergy content (Appendix 1).



6 / Introduction to the Guidelines to perform LCA of geothermal systems

• Application to the Italian case study

- **Goal of the study:** Assessment of the potential environmental impacts associated with the production of electricity from the Italian geothermal power plants of Bagnore 3 and Bagnore 4
- **Functional unit:** kWh of net electricity produced over the entire life cycle (30 years).
- System boundaries:
 - LCA phases modelled by Background processes
 - LCA phases modelled by Foreground processes
 - LCA phases not included



GEOENVI

• Application to the Italian case study

- **Allocation procedure:** the exergy takes into account the quality of the two energy products (i.e., electricity and heat) generated by the power plant.
- **Data representativeness and quality:** site-specific data have always been used when possible, whereas background data were retrieved from the Ecoinvent database with a preference for specific Italian dataset when available (i.e. for the electricity mix). When not available, average European or global dataset where selected instead.
- Mainassumptions
 - All the drilled wells will undergo a closure process when the plant runs out its lifetime.
 - During maintenance a 10% of the steel content of the steam turbine rotor was assumed to be substituted with new steel every four years.
 - Drilling wastes spent mineral oil and sorbent are sent to landfill with no additional treatment.

- E = electricity produced by the CHP system
- Q = heat produced by the CHP system
- T_s = supply temperature
- T_r = return temperature
- T_{ref} = reference temperature
- T_{Q} =mean logaritmich temperature of the heat produced by the CHP
- t = exergetic temperature factor
- αQ = allocation factor for heat
- αE = allocation factor for electricity

GEOENVI

○ Life Cycle Inventory

- Materials and energy requirements to build subsurface, surface infrastructures and equipment/components & drilling of the wells.
- Recommendations on the reporting of the type of direct emissions and receiving compartment (e.g. atmospheric emissions, effluents) are provided for each of these sub-systems.
- Use of primary data is priority, otherwise reference/average values as given in Appendix 2

Materials	Unit	Reference value MIN-MAX (Average)	
Steel, unalloyed	kg/well	7 428 (RT)– 17 660 (DO) (13 22 1)	
Steel, stainless INOX 316 L	kg/well	16 (HL)	
Concrete	kg/well	18 (HL) – 18 520 (BG) (9 269)	
Portlandcement	kg/well	13771 (RT)– 259286 (BG) (117686)	
Aluminium	kg/well	1 2 18 (HL) – 1500 (DO) (1359)	
Iron	kg/well	4 000 (DO) – 8 568 (BG) (6284)	
Excavation	m³/well	250 (DO) – 6851 (RT) (1940)	
Filling	m³/well	250 (DO) – 3135 (RT) (1723)	

Default values available in Appendix 2 (Example for wellhead construction)

G E 🔘 E N V I

○ Life Cycle Impact Assessment method based on EF V3.0

Impact Category	Unit	Indicator/Method	Version LCIA method	Source LCIA method	Level of priority	Level of robustness
Climatechange	kg CO ₂ eq	Radiative forcing as Global Warming Potential (GWP100)	1.0.5 (land use, land use change, biogenic), 1.0.8 (fossil), 4.0.16	IPCC 2013	High	1
Ozone depletion	kg CFC-11 eq	Steady-state ozone depletion potential	2.0.12	WMO 1999	Low Looking at the study by Chiavetta et al 2011	1
Human toxicity cancer effects	CTUh	Comparative toxic unit for humans as provided in the USEtox 2.1. Factors have been applied on inorganics and metals to account for the fact that USEtox has been designed for organic substances.	1.0.3	Rosenbaum et al., 2008	High Interesting to know even though potentially very uncertain	111

LEVEL OF PRIORITY (specific to Geothermal installations) & LEVEL OF ROBUSTNESS (scientifically ground)

Additionally covered aspects in the Guidelines

Reporting Inorganic emission with toxicity impacts

• As, B, Ar, Hg, Rn, Sb, H_2S

Additional indicators PES, Energy Pay-Back Time

Reporting & Communication section

- Methodological setting
- Parameter choices

.

- LCI details and assumptions
- Indication on what should be reported in figure and table captures

Thank you for your attention

Dr. Maria Laura Parisi

Department of Biotechnology, Chemistry and Pharmacy University of Siena

marialaura.parisi@unisi.it

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No [818242 — GEOENVI]

<u>www.r2eslab.com</u> info@r2eslab.com

in f ⊻

G E 🛇 E N V I