GEOENVI project

Project overview and harmonized methodology for environmental impact assessment with a life-cycle perspective for geothermal systems

^{27th} of April 2020

ORKUSTOFNUN
National Energy Authority

GEOENVI

Sylvía Rakel srg@os.is

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No [818242 — GEOENVI]

○ Where it comes from...

1. The advantages of using geothermal for power production and H&C are not widely known. Recently, deep geothermal energy production in some regions is confronted with a negative perception, and a special attention from some decision-makers, in terms of environmental performance, which could seriously hamper its market uptake.

2. Media reports focus more on disadvantages than advantages. As a result, decision makers and potential investors have concerns about possible environmental impacts and risks involved in implementing geothermal projects, and social resistance often results in practical obstacles - such as significant slowdowns - to the deployment of the deep geothermal resources.

○ **GEOENVI ANSWERS**....

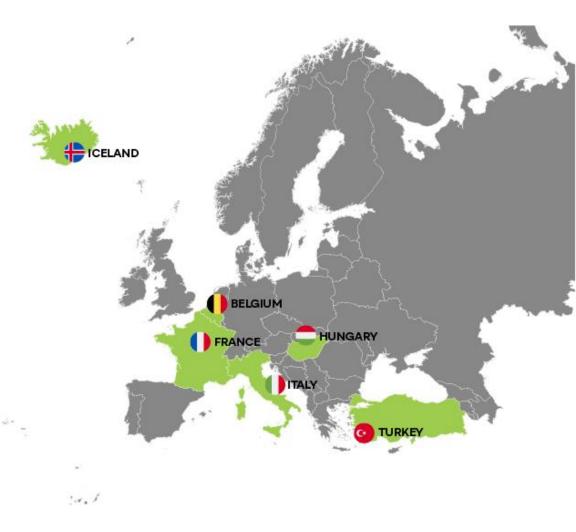
The GEOENVI project answers three important market-uptake challenges :

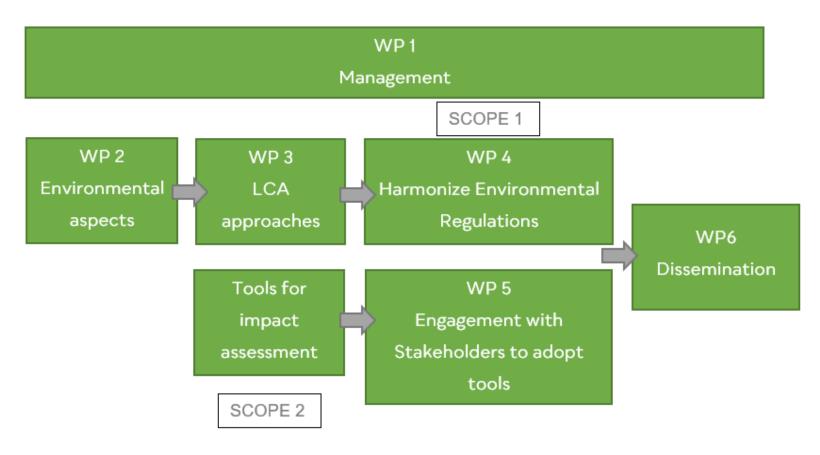
- Recommendation for harmonization of regulations, life cycle assessment approaches, environmental impact methodologies of renewable energy solutions;
- Development of tools (methods and models) for environmental impact assessments of renewable energy projects;
- Development of tools or services using global earth observation data, (such as those available through COPERNICUS), to support development and deployment of renewable energy sources;

○ Consortium

Participant No*	Participant organisation name	Country
1(Coordinator)	EGEC	BELGIUM
2	RETE GEOTERMICA	ITALY
3	ENEL GP	ITALY
4	COSVIG	ITALY
5	CSGI (Italian consortium of research group)	ITALY
6	CNR-IGG	ITALY
7	BRGM	FRANCE
8	ES-géothermie	FRANCE
9	Paris Minetech	FRANCE
10	MBFSZ	HUNGARY
11	ISOR	ICELAND
12	GEORG	ICELAND
13	Orkustofnun - OS	ICELAND
14	VITO	BELGIUM
15	JESDER	TURKEY
16	Dokuz Eylul Univ	TURKEY

○ Key actors


- Public environmental institutions and regulatory authorities, that implement and/or make the environmental regulations: they will exchange on best practices, tend to adopt the GEOENVI recommendations and methodologies, and envisage the harmonisation of their environmental regulations
- Industry & project developers, which develop geothermal projects: they will be consulted on environmental impact and LCA, and be asked to implement methodologies and tools.
- Scientific experts, to guarantee sustainability: they will support drafting of environmental regulations for the legislators and design methodologies and tools on environmental impact and LCA for industry.


O Target areas

GEOENVI is then targeting six countries in a first time: Iceland, France, Belgiun Italy, Hungary and Turkey. During the project results dissemination phase, the objective is to cover the rest of Europe.

○ Work Packages

○ WP3 overview

WP 3: LCA METHODOLOGY, Months 1-20, Orkustofnun

1. A comprehensive analysis of the panorama of studies reporting environmental assessment & sustainability assessment for geothermal systems (Orkustofnun) (Months 1-12)

2. Elaboration of the environmental impact and LCA guidelines for geothermal energy and application to the case studies (CSGI Task leader with main contribution from ARMINES for the LCA guidelines) (Months 3-23)

3. Development of a protocol for the generation of simplified LCA models to assess environmental impacts (ARMINES) (months 12-22)

4. Testing the applicability of the guidelines and the protocol for simplified models with the stakeholders (COSVIG) (Months 12-22)

HARMONIZED METHODOLOGY: LCA GUDIELINES

- Target: LCA experts
- LCA guidelines: a key milestone of the work package.
- Aim: 1) to offer methodological indications and assistance on how to perform LCA of geothermal systems with a common and accepted base allowing for comparison of results for different geothermal settings and energy conversion technologies. 2) To reduce LCA results variability, aligning methodological inconsistencies in published LCAs
- Methodological guidelines cover goal and scope definition, Life cyclel inventory (LCI) and Life cycle impact assessment (LCIA), interpretation and reporting results.

10/

O HARMONIZED METHODOLOGY: SIMPLIFIED LCA MODELS

- Generation of simplified parameterized model for a selection of GEOENVI case studies, to simplify comprehensive life cycle assessment models into reduced models that allow estimation of life cycle impacts based on a very low number of input parameters
- Target: non LCA experts

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No [818242 — GEOENVI]

(